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ABSTRACT
In this paper, we make a first assessment of the performance of
ActoDatA, a novel actor-based software library for distributed data
analysis and machine learning in Java that we have recently de-
veloped. To do so we have implemented an evolutionary machine
learning application based on a distributed island model. The model
implementation is compared to an equivalent implementation in
ECJ, a popular general-purpose evolutionary computation library
that provides support for distributed computing.
The testbed used for comparing the two distributed versions has
been an application of Sub-machine code Genetic Programming to
the design of efficient low-resolution binary image classifiers. The
results we have obtained show that the ActoDatA implementation
is more efficient than the corresponding ECJ implementation.

CCS CONCEPTS
• Software and its engineering → Software libraries and repos-
itories; • Computing methodologies → Multi-agent systems;
Genetic programming.
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1 INTRODUCTION
Parallel and distributed implementations of evolutionary algorithms
(EAs) are common in the literature. The intrinsic parallelism of EAs
makes their distributed implementation very natural, especially as
concerns the fitness function, which can be evaluated independently
for each individual in the population. GAs and PSO, where individu-
als share the same structure and thus the same fitness function can
be evaluated on different data instances of the same kind, can take
great advantage of GPUs SIMD paradigm [17], which makes such
a solution generally preferable to distributing the computation on
different machines.

Instead, distributed computing on several homogeneous or het-
erogeneous nodes is often advantageous when the individuals’
evaluation requires the execution of different code, as happens in
Genetic Programming (GP), even if single-host environments opti-
mized for such an EA have also been proposed based on the MIMD
paradigm [5]. This is also true when the solution to the optimization
problem follows a Divide-and-Conquer approach in which different
populations independently explore different regions of the search
space. This means that each population is evaluated on different
fitness cases and no data sharing among islands is required. This is
the case, for example, of the island model [21]. In a parallel imple-
mentation of the island model, each node of a cluster of connected
machines executes the evolution of a specific subpopulation, and
migrations of good individuals can occasionally occur by serializing
them and sending them in messages between islands.

Thus, most software packages implementing EAs, like ECJ [16]
or DEAP [7], support distributed computing either natively or based
on external, general-purpose distributed computing environments,
such as SPACE, that has been developed and tested on an evolu-
tionary robotics application [11].
In this paper we will focus on ActoDeS [2, 3, 14], a powerful and
efficient Java library for actor-based and event-driven software
development. Based on ActoDeS, we have recently developed Acto-
DatA [13], an actor-based Java library for data analysis andmachine
learning. In this work, we evaluate ActoDatA by using such a library
to implement SmcGP-Islands, an application where a distributed,
island model-based EA running Sub-machine code genetic pro-
gramming [18] evolves low-resolution binary images classifiers as
described in [4]. It should be noted that themain contribution of this
paper is not describing a new island model; our aim is to compare
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an implementation of a classical island model using ActoDatA to
an equivalent reference implementation based the IslandExchange
utility from ECJ.
ActoDatA is briefly overviewed in section 2. SmcGP-Islands is de-
scribed in section 3 and compared against an equivalent imple-
mentation created with ECJ in section 4. Finally, the results are
summarized in section 5.

2 ACTODATA
The actor model, firstly introduced in [8], is a formalism for con-
currency and event-driven programming. The use of actors as a
primitive allows the designer of a concurrent system to isolate soft-
ware entities from one another, avoiding several issues like race
conditions and deadlocks. In such systems, the computation unfolds
as series of messages exchanged between actors, and reactions of ac-
tors to events related to incoming messages. This conceptualization
of software components as separated and independent processes
makes it possible to distribute systems on several machines. Over
the years, several flavours of the actor model were introduced and
extensively used. Among the most frequently adopted variants, the
one proposed by Agha [1] is considered one of the most successful,
probably thanks of its adoption by the popular Akka [12] platform.

The model proposed by Agha is also implemented in ActoDeS [2,
3, 14]. In ActoDeS, an actor that receives a message can react in
three ways: (i.) change its internal state (and consequently poten-
tially influence its following reactions); (ii.) create other actors;
(iii.) sending messages to other actors. This approach allows the
system to be modeled as a set of passive lightweight processes,
optimized to use shared system resources and processor time only
when needed, i.e., when the actor needs to react to a message event.
Doing so allows very large numbers of concurrent processes to run
at the same time, enabling an easy scaling up. In combination with
the asynchronous message-passing model, easy to implement on
networks of connected machines, it is also very easy to scale out
an actor-based system on multiple machines. ActoDeS achieves
this by distributing the actors on multiple interconnected actor
spaces, which are containers for many actors on the same Java Vir-
tual Machine (JVM) instance. Actors can trasparently communicate
with one another by using their respective References, which are
abstractions that represent potential destinations of messages.

ActoDatA is a novel software library designed to support the
development of data analysis (DA) and machine learning (ML) ap-
plications with the help of the actor computation model. ActoDatA
is built on top of ActoDeS and presents itself as a Java and Kotlin
library. It is an attempt to (i.) promote actor-based development
for DA and ML applications with high parallelism and horizontal
scaling potential; (ii.) define a software design paradigm to guide
the programmer in developing complex DA and ML architectures;
(iii.) reduce boilerplate code by providing an implementation of the
most common features of DA and ML software.

ActoDatA enriches the tools provided by ActoDeS with a set of
specialized actor types, namely:
(i.) acquirers - which acquire data instances from an external source;
(ii.) preprocessors - which perform some kind of transformation, fil-
tering, or aggregation on the data;
(iii.) reporters - which submit data instances to the environment in

which the application is running;
(iv.) engines - which perform, possibly in parallel, resource-intensive
computation on the data;
(v.) controllers - which coordinate the activity of many engines;
(vi.) dataset managers - which manage collections of data instances;
(vii.)master - a single actor which creates all the actors of the initial
structure, starts the application, and manages structural aspects of
the application at run-time.
The user is required to create specializations of these actor types
(by extending the corrisponding Java classes) in order to customize
the behavior of each component of the application. Some common
specializations are built in the library, e.g., the mapper, filter, re-
ducer and other preprocessor specializations, allowing users to build
useful generic operations on data, most of which are inspired by
common concepts of functional-style programming. Fig. 1 shows an
example of how these preprocessors act as functors that operate on
data messages and can be composed to easily define a computation
distributed on ActoDatA actors.

Some actors, namely acquirers, preprocessors, controllers and
reporters, can use express protocols to build data pipelines, which
constitute the main mechanism used by the library to carry data
between chains of communicating actors, where each actor per-
forms a specific computation on the data themselves. ActoDatA
actors and data pipelines can be used to model applications that
can acquire and process high volumes of data with efficient use of
the resources provided by computer clusters. Such applications can
be characterized by high structural-level complexity and, for this
reason, ActoDatA provides an express application programming
interface (API) to ease the definition of an application’s structure.
This API allows the programmer to declaratively define which ac-
tors compose the structure, how the actors are connected by means
of data pipelines and other communication protocols, and how the
actors are distributed on the actor spaces of the application. An
example of usage of this API can be found in the listing in Fig. 2.
This mechanism facilitates the creation of structures for DA and ML
applications. Fig. 3 schematizes a simple example of a typical dis-
tributed DA application. However, the paradigm made of ActoDatA
actors and pipelines is general enough to support the development
of other types of distributed applications, like the one described in
the next sections.

ActoDatA provides some other programming facilities to support
the developer in the creation of actor-based DA and ML applica-
tions. One example is the promise construct, that makes it possible
to define complex asynchronous algorithms by means of the inter-
leaving of procedural code blocks and suspension points. In such
points, the control flow is suspended while the actor awaits for the
occurrence of a required external event (for example, a response
from another actor). However, note that in such points the actor is
free to operate and react to events concerning other control flows
and interactions with other actors. In this approach, the user is not
required to use any classical multi-threaded synchronization primi-
tive. Conversely, the user builds chains and branches of closures
sequentially composed by means of the methods provided by the
Promise class.

ActoDatA is a modular library, currently composed of three
modules. The first is ActoDatA-core, which contains all the main
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Figure 1: A chain of preprocessors that filters, transforms
and collects text data instances into ArrayLists. Each
rounded rectangle in the diagram represents a different ac-
tor, while the arrows between them represent the estab-
lished data links of the pipeline.

functionalities required for the creation of any ActoDatA applica-
tion. Another module is ActoDatA-kotlin, which is built on top of
the core module to provide additional facilities to take advantage of
the many advanced features of the Kotlin programming language.
Kotlin was adopted since it is very recently proving to be a valid
programming language to support DA and to develop ML applica-
tions [19]. Many libraries and tools to perform DA were recently
proposed by the community, such as interactive notebooking fa-
cilities [10], deep learning [9], numerical analysis libraries, data
manipulation and visualization tools.

Finally, an ActoDatA-weka module is under development, and it
is meant to allow easy interoperation of ActoDatA with Weka by
means of prebuilt specialized actors that integrate Weka classifiers
to perform ML tasks.

1 // Creating a new structure.
2 ActoDataStructure s = new ActoDataStructure ();
3

4 // Acquirer on the first remote actor space.
5 var acquirer = s.acquirerNode (() ->
6 new TwitterAcquirer(
7 ckey , csecret , token , kword
8 )
9 ).on(( otherSpaces , here)-> otherSpaces.get(0));
10

11 // Preprocessor on second remote actor space.
12 var preproc = s.preprocessorNode (() ->
13 new Mapper <>(( Status x) -> x.getText ()
14 .toLowerCase ())
15 ).on(( otherSpaces , here)-> otherSpaces.get(1));
16

17 // Filter on third remote actor space.
18 var filter = s.preprocessorNode (() ->
19 new Filter <String >() {
20 @Override
21 public boolean test(String x) {
22 return !x.isBlank ();
23 }
24 }
25 ).on(( otherSpaces , here)-> otherSpaces.get(2));
26

27 // Reporter on the master 's (here) actor space.
28 var reporter = s.reporterNode (() ->
29 new Reporter <String >() {
30 @Override
31 public void reportData(String x) {
32 System.out.println(x);
33 }
34 }
35 ).on(( otherSpaces , here) -> here);
36

37 // Link all the actors in a single pipeline.
38 acquirer.link(preproc)
39 .link(filter)
40 .link(reporter);
41

42

Figure 2: A simple example usage of the ActoDatA Struc-
ture API. This listing shows code that creates an acquirer,
a preprocessor, a filter preprocessor and a reporter on four
different connected actor spaces, and then links them in a
pipeline.

3 SMCGP-ISLANDS
ActoDatA can be used as candidate support library to develop many
ML applications. To assess its performance in developing distributed
evolutionary algorithms, in this work we describe SmcGP-Islands,
an application based on ActoDatA in Java. SmcGP-Islands is an
implementation of an island model [6] running Sub-machine code
Genetic Programming (SmcGP).

SmcGP [18] is a particular genetic programming (GP) paradigm
suitable for binary pattern recognition applications. Algorithms that
follow this paradigm efficiently execute compute-bound operations
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Reporter

Preprocessor

Acquirer

UserStatusAcquirer StatusFilter

Social Network
Data

StatusPreprocessor

TopicClassifier TopicClassifier TopicClassifier

BaggingController

StoreResults

Figure 3: An example of an ActoDatA DA application made up of several data pipelines. In each pipeline, acquirer actors
extract data from an external source (e.g., social network public data) and send them to preprocessors, which perform several
simple transformations on the data instances. Then, ensembles of controllers and coordinated engines perform some complex
processing on the data. The results are then collected by a reporter which produces the final output of the application.

on binary data by parallelizing several single-bit operations into
a single CPU instruction. The idea is to take advantage of the
single-instruction-multiple-data (SIMD) parallelism available in all
modern CPUs. As a matter of fact, using GP to evolve trees using an
instruction set including only logic bitwise-operations operating on
N-bit words produces N-bit words as outputs. Each of the latter can
represent the output of a set of N binary classifiers that could be
trained on data instances represented by terminals encoded as N-bit
words. Such data could be, for example, stock market information
about buy and sell opportunities [20], binary patterns and images,
etc. Including shift intructions in the GP instruction set allows GP
trees to perform convolution-like operations on neighboring pixels,
otherwise the value of each output bit would only depend on the
values of the corresponding bits in the input words.

In SmcGP-Island, we replicated the application described in [4]
using an island model. In such an application, low-resolution (13x8
pixels) binary patterns, each portraying a numerical digit (from 0 to
9, see Fig. 4), are packed row-wise into N-bit words that are given
as input to GP trees encoding complex logic functions as described
above. The dataset have been extracted from rear Italian license-
plate images and includes 11034 patterns, divided into a training
set of 6024 patterns, almost uniformly distributed among the ten
digits, and a 5010-pattern test set including exactly 501 patterns
per digit.

The result of each classifier/tree is an N-bit binary value, where
each bit can be independently evaluated as a binary classifier for
a specific class (e.g., whether the input image contains the digit

Figure 4: Examples of patterns in the data set used to train
the binary classifiers, represented in grayscale (top) and as
the binary patterns (bottom) used as input to the GP pro-
grams.

8 or not). The fittest output bit determines the overall fitness of
an individual. To evolve such programs with GP, a particular set
of functions and terminals is defined. The function set used in
SmcGP-Islands is listed in Table 1.

We implemented two variants of SmcGP-Island. The first was
developed with ECJ [16] and its bundled IslandExchange [15] facil-
ity. When executed, the IslandExchange’s main method launches a
server that waits for all the islands to connect to it before starting
the execution. Communication occurs on TCP/IP sockets, with the
server that acts as communication broker and coordinator. Each
island in ECJ is a separate Java process, running in its own JVM in-
stance, and each island is configured to send its migrants to another
island, following a static closed-ring topology. The ECJ applica-
tion is set to run in synchronous mode, in order to comply with
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Figure 5: Example of an execution of the migration protocol
with a minimal ring of two islands.

the bulk-synchronous parallel model. The adoption of this parallel
computation model has the disadvantage of creating a significant
overhead, with idle islands waiting at each synchronization barrier.
However, it was chosen for several reasons:
(i.) it ensures that migrations start and end at the same generations
in each source and destination island;
(ii.) it ensures that the island ring stays the same at each migration;
(iii.) the communication channels are stressed by gathering commu-
nication events in coincidental time intervals, because migration

Function(s) Arity Description
AND 2 Bitwise-and (a & b)
OR 2 Bitwise-or (a | b)
XOR 2 Bitwise-exclusive-or (a ^ b)
NAND 2 Bitwise-negated-and (~(a & b))
NOR 2 Bitwise-negated-or (~(a | b))
NOT 1 Bitwise-not (~a)

SHR1 SHR2
SHR4

1 Circular right shift by 1, 2, 4

SHL1 SHL2
SHL4

1 Circular left shift by 1, 2, 4

Zero 0 Terminal constant: 0
One 0 Terminal constant: 1

PAT1 PAT2
PAT3 PAT4

0 Terminal used as input value, containing
a portion of the image.

ERC 0

Ephemeral Random Constant, initialized
by picking a random integer value on
the set of all possible integers repre-
sentable by 32 bits.

ERC16 0
Ephemeral Random Constant, initialized
by picking a random integer value be-
tween 0 and 15.

Table 1: The function and terminal set used in SmcGP-
Islands (using 32-bit words). Terminals have arity equal to
zero.

Island (Engine)

Server/Controller

Figure 6: The architecture of SmcGP-Islands, configured as
a ring of eight islands. Dotted arrows indicate the direction
of migrations. The controller coordinates all the islands by
communicating with each of them (double-headed arrows).

and synchronization messages are exchanged at the same time be-
tween all islands; this makes the application a good benchmark to
assess performances under high usage of network resources. Fig. 6
illustrates the architecture of SmcGP-Islands.
In the second implementation, the IslandExchange facility is re-
placed by an ActoDatA set of actors. In particular, each island is
defined as an ActoDatA engine actor that manages the evolution
of a subpopulation, and the activity of the engines is coordinated
by an ActoDatA controller actor. The controller commands each
island to start each iteration, then waits for each island to com-
plete the iteration by signaling it with a DONE message. Every𝑚𝑟𝑎𝑡𝑒

iterations, the controller creates and sends a MigrateIndividuals

message request to each island, specifying how many individuals
that island must send and the islands to which migrants should
move, identified by their ActoDeS reference. Islands process in
parallel their MigrateIndividuals message by selecting a set of mi-
grants of the specified size and encapsulating them into a Migration
message, which is sent to the destination island. When an island
receives a Migrationmessage, it adds the individuals in the message
to its population and sends a Done.DONE message to the controller.
As soon as the controller receives a Done.DONE message from each
island, it goes back to coordinating the usual EA iterations. This
migration protocol provides the flexibility required to implement
more complex and dynamic topologies and is summarized by the
example in the diagram in Fig. 5.

AnActoDatAmaster actor is used to set up the application.When
the application is launched in distributed mode with a number
𝑛 ≥ 2 of connected actor spaces, the master creates the controller
on a node and distributes all the island engines evenly among the
other nodes. Note that every island is an actor, not an independent
JVM process. Multiple ActoDatA engine islands can be, of course,
launched on the same actor space, running on the same JVM in-
stance. This is one of the core architectural differences between
the ActoDatA implementation and the pure ECJ implementation of
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the application, which instead executes each island as its own JVM
process.

In the ActoDatA implementation, the evolutionary aspects of
each single island are managed by ECJ with the same configuration
and parameters as in the pure ECJ variant. This means that all the
details strictly related to population initialization, fitness evalua-
tion and breeding of each island are the same as in the pure ECJ
implementation, while the set up, location, synchronization, and
communication details are handled by ActoDatA and its actors.

In both implementations, each island is set to be executed se-
quentially and not in multithreaded mode, so parallelism can only
be exploited by multiple islands running at the same time. This
was done to ensure architectural consistency between the two
systems, in order to highlight the differences of using ActoDatA in-
stead of IslandExchange. The application is configured to initialize
each sub-population of 1000 individuals using ramped half-and-half
initialization, with a grow-probability of 0.5, and program depth
ranging from 5 to 7. To evolve the population, two ECJ breeding
pipelines are used for each island. The crossover probability is set
to 0.8. The offspring resulting from crossover cannot exceed a max-
imum depth of 15. The reproduction pipeline has a likelihood of
0.2 ad follows a tournament selection with a tournament size of
7. Moreover, randomly selected solutions can mutate with a likeli-
hood of 0.03, and generated subtrees can have a minimum depth
of 2 and a maximum depth of 5. Finally, migrations occur at the
third generation and every three generations thereafter, and each
migration trasfers 10 migrants from one island to the other.

To compare the two implementations, the applications were
executed on a cluster composed of four nodes connected by Gigabit
Ethernet. Each node was equipped with 16 GB of RAM and two
quad-core Intel Xeon E5504 CPUs with 2GHz clock frequency. This
means that the software was executed in parallel by 8 cores when
launched on a single machine, and up to 32 cores when the software
was distributed over all the machines. Each machine runs Linux
Ubuntu version 20.04 and uses Java 14. Ten runs were launched for
eachmode𝑀 , with𝑀 ∈ 𝑁×𝐿, where𝑁 is the set of possible number
of nodes used to run the software in parallel (𝑁 = {1, 2, 3, 4}) and
𝐿 is the set of implementations whose statistics has been sampled
(𝐿 = {PureECJ, ECJ&ActoDatA}).

For each run, 32 islands were spawned, equally distributed1
on the 𝑛 ∈ 𝑁 nodes. Because of its minimal computational re-
quirements, the Controller/Server is always executed on one of
the nodes also used by the islands, and never on a dedicated node.
The ECJ&ActoDatA implementation always uses a JVM for the
controller and the master, and another JVM per node to host the
islands, so there are always 𝑛 + 1 JVM processes running on the
cluster. The Pure ECJ implementation, instead, requires a distinct
process for each of the islands and one for the server, so there are
always 33 JVM processes running.

4 CONVERGENCE TIME
Time measurements refer to the convergence speed of the algo-
rithm, i.e., the actual time that the run took to produce at least
an individual 𝐼★ with fitness 𝐹𝑖𝑛𝑑 (𝐼★) ≤ 0.017 on any island. The

1For the 𝑛 = 3 nodes case, two nodes host 11 islands each, and the third one hosts 10
nodes and the Controller/Server.

choice of this fitness thershold derives from the results obtained
in [4] that indicate that such a fitness is almost always reachable and
corresponds to a good accuracy on the test set. It should be noticed
that the experiments we performed were not finalized at maximiz-
ing the classification results of [4] as we chose such an application
just as a benchmark to assess the efficiency of its distributed im-
plementation in the Pure ECJ and ECJ&Actodata versions. Time
measurements are denoted with 𝑇𝑛 when the system is executed
on 𝑛 nodes of the cluster.

Average, minimum, maximum and standard deviation values of
the execution times, obtained over 10 runs by all configurations,
are listed in Table 2.

The results indicated a tendency of the ECJ&Actodata implemen-
tation to be faster than the Pure ECJ implementation, as shown
in the graph in Fig. 7. To test the statistical significance of the
results, a set of Wilcoxon rank-sum tests have been carried out,
with a threshold on the 𝑝-value of 0.05 (Table 3). The results of the
Wilcoxon tests confirm that when the algorithm is distributed over
more than one node, there is a significant difference between the
convergence times of the ActoDatA implementation and the pure
ECJ implementation.

A possible reason for this might be related to one of the intrinsic
advantages of the actor model in ActoDeS and ActoDatA, and the
consequent optimization of message dispatch among islands. As a
matter of fact, in the ActoDatA-powered version, islands are mod-
eled as actors, and multiple islands in the same actor space coexist
on the same machine2. When multiple actors communicate within
the same actor space, the messages exchanged among them are not
serialized. Instead, the references to the Java object representing
each message are simply added to the inbox of the recipient actor,
2To take full advantage of the internal parallelism provided by the multicore CPUs in
each machine, since each island executes its iterations sequentially.

Implementation 𝑛
Avg. 𝑇𝑛
(SD) Min Max

Pure ECJ 1 419s
(110s) 274s 560s

Pure ECJ 2 261s
(46s) 181s 347s

Pure ECJ 3 225s
(76s) 74s 361s

Pure ECJ 4 204s
(76s) 139s 420s

ECJ & ActoDatA 1 325s
(99s) 186s 451s

ECJ & ActoDatA 2 203s
(44s) 140s 296s

ECJ & ActoDatA 3 143s
(28s) 83s 179s

ECJ & ActoDatA 4 124s
(35s) 56s 171s

Table 2:Mean, StandardDeviation,MinimumandMaximum
values of execution time (𝑇𝑛), for each implementation and
number of nodes (𝑛) used.
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Figure 7: Scatter plot that displays the execution times and the tree size of the best individual of each run. Runs are grouped
by implementation type and number of nodes used. The line in each implementation group links the mean time values.

exploiting the advantage given from sharing the same memory
heap space. When a migration occurs, only migration messages
from islands that do not coexist on the same actor space need to
be serialized. This contrasts with the ECJ approach, where each
island has to be executed in its own JVM process, and all migration
messages have to be serialized to be sent via TCP/IP sockets, and
deserialized on the destination JVM process, probably causing more
overhead and congestion on the network links. Further investiga-
tions are needed to confirm the above hypotheses. The results on
the convergence speed measurements also confirm that, with an
increasing number 𝑛 of nodes, the time required to find a solution
decreases for both implementations. Table 4 shows the average
speedup (speedup is 𝑆𝑛 = 𝑇1/𝑇𝑛 where 𝑇𝑖 is the execution time

Convergence Time - ECJ & ActoDatA vs ECJ.
• 𝐻0: With 𝑛 = 1...4, ECJ & ActoDatA finds a solution as fast
as ECJ.

• 𝐻1: With 𝑛 = 1...4, ECJ & ActoDatA finds a solution faster
than ECJ.

𝑛 𝑝-value 𝐻0 rejected?
1 0.232 NO
2 0.037 YES
3 0.027 YES
4 0.014 YES

Table 3: Results of Wilcoxon rank-sum tests, for each num-
ber 𝑛 of nodes considered, in comparing the convergence
times of the two implementations.

Implementation 𝑛 Avg 𝑆𝑛 Avg 𝐸𝑛

Pure ECJ 2 1.60 80.2%
Pure ECJ 3 1.86 62.0%
Pure ECJ 4 2.05 51.3%

ECJ & ActoDatA 2 1.60 80.0%
ECJ & ActoDatA 3 2.27 75.8%
ECJ & ActoDatA 4 2.62 65.6%

Table 4: Average speedup and efficiency for parallel execu-
tions on 𝑛 = 2, 3, 4 nodes.

with 𝑖 nodes) and efficiency (efficiency is 𝐸𝑛 = 𝑆𝑛/𝑛) values for all
implementations, with 2, 3 and 4 nodes.

5 CONCLUSIONS
We have shown that ActoDatA, described in section 2, even if in
its present preliminary version, is a promising software library,
enabling the creation of applications for big data analysis and ma-
chine learning that leverage the flexibility of the actor model. With
ActoDatA, the user can create arbitrarily complex topologies of
specialized actors and define the behavior of the application with
minimal amount of boilerplate code, both in Java and Kotlin.

We have used ActoDatA to develop the SmcGP-Islands applica-
tion, which distributes over several nodes the evolution of several
sub-machine code genetic programming populations for the classi-
fication of low-resolution binary images of numerical digits. Two
different implementations of this application were compared. The
first implementation uses ActoDatA to handle the distribution and
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communication aspects, and the other one uses the specific facilities
of the ECJ library, a popular research system for evolutionary com-
putation in Java. Both implementations use internally the same ECJ
code to implement the evolutionary algorithm code of each single
island, and run until they reach a pre-set fitness threshold. The
results showed a significant advantage for ActoDatA in terms of
convergence time, speedup and efficiency on the number of nodes
used.

Future workwill focusmore on the quality of results and includes
implementing island models with different topologies, as easily
permitted by ActoDatA, evaluating different migration and data
distribution schemes, and solving other challenging problemswhich
can benefit from a distributed implementation.
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