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ABSTRACT
This article describes the project result of modeling and optimizing
Radio Access Network. We have proposed a solution for control-
ling a large number of antennas in the conditions of engineering
constraints and a large search space dimension. For estimating the
performance, a virtual environment has been developed, that al-
lows changing the parameters of Radio Access antennas to control
the coverage and signal quality for all User Equipments. To opti-
mize the Radio Access network, we have analyzed DE, CMA-ES,
MOS, self-adaptive surrogate CMA-ES, lq-CMA-ES, BIPOP CMA-ES,
sep-CMA-ES, lm-CMA-ES, HMO-CMA-ES, JADE, PSO, which have
been adapted to the constraints of the task. To reduce dimension,
graph clustering methods - Spectral clustering, Label propagation,
Markov Clustering - are compared in dividing the network into
groups. The experiments illustrate the efficiency of optimizing a
large Radio Access network by the cluster approach.
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1 INTRODUCTION
Radio Access networks provide access to wide spectrum and multi-
gigabit data rates for User Equipments (UE) [5]. One of the key
features of these systems is the phased array antennas that are able
to focus the signal at a desirable direction. That helps to enhance the
power of usable signal and to decrease the cross-cell interference.

The most important problem when working at the High-Band
spectrum is the limited coverage area and invalid dead zones. The
physics of propagation of a radio signal at mmWave frequencies is
different from low or medium bands. Thus, an important task is to
improve the coverage and signal quality for the UEs of the network
when operating Radio Access networks.

This problem involves an uncertain environment in which it isn’t
trivial to obtain a physical model of propagation and attenuation
of signals for using the derivative-based methods. Thus, it was
suggested to apply the Black-Box optimization approach [16], which
doesn’t have this drawback and could be adapted to different signal
simulation systems.

In general, this problem is a multi-objective optimization prob-
lem involving multiple performances of the network signal. Evo-
lutionary algorithms have been successfully proven themselves as
reliable solutions for Radio Access networks in the problems of En-
ergy consumption [6], Resource Allocation [4, 22], and Pre-coding
[7].

As noted earlier, deployment and maintenance of networks in-
volve optimization of service coverage and radio base station an-
tenna configuration where was suggested several the solution ap-
proaches based on local search methods, e.g., simulated annealing
[23], or iterative optimization procedure based on Taguchi’s method
[2]. The solution approach this article adopts is an Evolutionary
algorithm and consider business scenario on the angle parameters.

The main contributions of this article are:
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• Evolutionary algorithms’ analysis for Radio Access Network
Optimization in low and high dimension scenarios,

• Comparison of network clustering methods.
In Section 2, we define the optimization problem, describe the

Radio Access network Model for signal simulation. In Section 3,
we explain the main ideas of researched optimization algorithms.
In Section 4, we describe graph clustering methods for reducing
the problem dimension by dividing the network into groups. In
Section 5, we introduce experiment results on high-dimension and
low-dimension problems.

2 PROBLEM FORMULATION
We consider the model of Radio Access Network. The target func-
tion is a hybrid quality indicator:

min
𝑥

(
𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 (𝑥), 𝐼𝑛𝑡𝑒𝑟 𝑓 𝑒𝑟𝑒𝑛𝑐𝑒 (𝑥)

)
,

𝑥 = [ℎ𝑖 , 𝑣𝑖 , 𝑡𝑖 , 𝑎𝑖 , . . . , ℎ𝑁 , 𝑣𝑁 , 𝑡𝑁 , 𝑎𝑁 ],
(1)

where:
• Coverage (Cov) is the network coverage indicator,
• Interference (Inf) is the signal quality indicator,
• ℎ𝑖 – 𝑖-th cell’s horizontal width of beam (HBW),
• 𝑣𝑖 – 𝑖-th cell’s vertical width of beam (VBW),
• 𝑡𝑖 – 𝑖-th cell’s antenna tilt,
• 𝑎𝑖 – 𝑖-th cell’s antenna azimuth,
• 𝑁 – number of cells.

In the following subsections, we describe themathematicalmodel
of signal propagation in a radio access network.

2.1 Radio Access Network Model
Radio Access Network consists of:

• Grid of 𝑁 cells. Each cell has a set of static parameters: coor-
dinates, height, transmitted power. Controllable parameters
are: HBW, VBW, azimuth and tilt. Each cell has 8 Synchro-
nization Signal Block beams (SSB beams).

• Grid of𝑀 User Equipments. Each UE is a static object and
has only fixed coordinates.

Figure 1: Left. Covering users with multiple beams.
Right. HBW and VBW parameters of cell beam

To calculate the performance of the network, each cell’s control
parameters are applied. Next, the simulation system performs the
following operations:

(1) Calculation of the Reference Signal Received Power (RSRP)
from the cells for each UE.

(2) Assignment of the serving cell and SSB beam for each UE.
(3) Calculation of the Signal to Interference+Noise Ratio (SINR)

for each UE.

2.1.1 RSRP. The power of the signal received by UE 𝑢 from the
SSB beam 𝑏 of cell 𝑐:

RSRP𝑐,𝑏,𝑢 = Tx𝑐 − PL𝑐,𝑏,𝑢 , (2)

where Tx𝑐 – cell’s transmit power, PL𝑐,𝑏,𝑢 – propagation loss.
Propagation loss PL𝑐,𝑏,𝑢 is a sum of simplified Log-distance path

loss PL𝐷𝑐,𝑢 and attenuation caused by beamforming PL𝐵
𝑐,𝑏,𝑢

. Simpli-
fied Log-distance path loss model represents logarithmic power
loss [17]:

PL𝐷𝑐,𝑢 =

{
𝐿0 + 10𝑛 log10

𝑑𝑐,𝑢
𝑑0

, if 𝑑𝑐,𝑢 > 𝑑0,

0, otherwise,
(3)

where 𝑑0 = 0.001 is reference distance, 𝐿0 = 46.677 is path loss at
𝑑0, 𝑛 = 3.

Attenuation caused by beamforming depends on angular differ-
ence between SSB beam direction and direction to UE [18]:

PL𝐵
𝑐,𝑏,𝑢

= 10 · 1.2
((

Δ𝑎𝑐,𝑏,𝑢
ℎ𝑐

)2
+

(
Δ𝑡𝑐,𝑏,𝑢
𝑣𝑐

)2)
, (4)

where Δ𝑎𝑐,𝑏,𝑢 and Δ𝑡𝑐,𝑏,𝑢 are angular differences in azimuth and
tilt, respectively.

2.1.2 Assigning serving cells. In our model, the Radio Access
network is static at each timestamp, no handovers happen. Thus,
UE-to-beams serving map Serv(𝑢) is defined as follows:

Serv(𝑢) = argmax
𝑐,𝑏

(
RSRP𝑐,𝑏,𝑢

)
. (5)

2.1.3 Coverage. WC is a key performance indicator that shows
the amount of UEs with received signal lower than a threshold
value 𝑇ℎ𝑑𝑊𝐶 [9].

WC =
1
𝑀

𝑀∑︁
𝑖

[
RSRPServ(𝑖),𝑖 < 𝑇ℎ𝑑𝑊𝐶

]
, (6)

where, depending on the selected threshold, the quality of the
network coverage can be determined. The threshold value is usually
taken in the range from -90 to -80 (in dBm).

2.1.4 SINR. SINR is power of usable signal from UE’s serving
cell, divided by total power of signals from neighboring cells and
noise [24].

SINR𝑢 =
100.1·RSRPServ(𝑢),𝑢∑

𝔅 100.1·RSRP𝑐,𝑏,𝑢 + 𝜂𝑢
, (7)

where 𝔅 = {(𝑐, 𝑏) | (𝑐, 𝑏) ≠ Serv(𝑢), 𝑏 = Serv(𝑢)𝑏 } – set of SSB
beams sharing the same time slot, 𝜂𝑢 – background noise on the
user side (e.g., −97dBm).
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2.1.5 Interference. INF is a key performance indicator that shows
the amount of UEs with SINR value lower than threshold value
𝑇ℎ𝑑𝐼𝑁𝐹 .

INF =
1
𝑀

𝑀∑︁
𝑖

[SINR𝑖 < 𝑇ℎ𝑑𝐼𝑁𝐹 ] , (8)

The threshold value is usually taken in the range from 3 to 10 (in
dB).

3 OPTIMIZATION ALGORITHMS
A brief description of each researched optimization algorithms are
presented in this section. In a view of the problem, two main classes
of algorithms can be considered: single-objective, using the linear
scalarization method,

min
𝑥

(
𝑤𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 (𝑥) + (1 −𝑤)𝐼𝑛𝑡𝑒𝑟 𝑓 𝑒𝑟𝑒𝑛𝑐𝑒 (𝑥)

)
, (9)

and multi-objective, where the performances are optimized sepa-
rately (1).

Based on the related works [3, 25], it was assumed that Co-
variance Matrix Adaptation Evolution Strategy (CMA-ES) or its
modifications outperform basic algorithms such as Particle Swarm
Optimization (PSO), Differential Evolution (DE). Thus, we gave
due attention to the variations of CMA-ES, including techniques
for: reducing the complexity of the covariance matrix, control-
ling the step-size, restarting and approximating the target function
(surrogate concept). For multi-objective we considered a special
modification of the CMA-ES – Hybrid Multi-Objective CMA-ES
(HMO-CMA-ES).

3.1 Particle Swarm Optimization
Particle Swarm Optimization (PSO) [10] is a metaheuristic popula-
tion-based algorithm based on the bird’s swarm concept, where a
swarm is a special group with interaction and behavior rules. The
main property of this concept is swarm intelligence which means
the ability to communicate between each member and to use the
previous experience.

In fact, PSO particles based on the two vectors: position 𝑋 𝑡
𝑖
=

[𝑥𝑖1, 𝑥𝑖2, 𝑥𝑖3, . . . , 𝑥𝑖𝑛] ∈ R𝑛 and velocity 𝑉 𝑡
𝑖
= [𝜐𝑖1, 𝜐𝑖2, 𝜐𝑖3, . . . , 𝜐𝑖𝑛]

∈ R𝑛 at each iteration 𝑖 . In order to estimate the fitness value of
each particle, it is necessary to apply the position vector to the
objective function. After that, an iterative process is started based
on:

(1) Velocity update, based on best position of each particle and
the whole particle in the swarm.

(2) Position update, based on the previous position and current
velocity

3.2 Differential Evolution
The Differential Evolution algorithm [19] is a population-based
stochastic optimizer based on the mechanism of natural selection.
This algorithm consists of three operations: mutation, crossover,
and selection. For a new population at each iteration, mutation
and crossover are applied to individuals. Then, in a selection phase,
each individual of a new population is compared to the old ones,
and in the next iteration, only the best individuals take a part.

3.3 JADE
JADE is a modification of DE based on the implementation of a
new mutation strategy "Current-to-𝜌best" with Optional Archive
and adaptive generation of parameters for crossover and mutation
operations [28], which cease to be a constant and are generated
in each iteration according to the Gaussian distribution and the
Cauchy distribution respectively.

3.4 Covariance Matrix Adaptation Evolution
Strategy

The CMA-ES [12] is a state-of-art population-based evolution algo-
rithm for black-box optimization problems in continuous domain,
which has proven to be an efficient algorithm for high-dimension,
noisy and multimodal benchmarks of objective functions.

3.4.1 Main idea. CMA-ES algorithm can take the results of each
generation, and adaptive increase or decrease the search space for
the next step. Each iteration of the algorithm consists of 4 main
operation:

(1) Sampling and evaluating. New candidates of each generation
are samples normally distributed

(2) Selection and Recombination. Based on the individuals’ fit-
nesses, only the best individuals from the population survive
and become parents. Only fitness ranks are used.

(3) Mutation. This step includes covariance matrix adaptation,
where the new one consists of information about: the pre-
vious state, correlations between generations (particularly
important in small populations) and the entire population
(important in large populations). The covariancematrix adap-
tation increases or decreases the scale only in a single direc-
tion for each selected step. That is why a step-size is needed
in addition.

3.4.2 Reducing the covariance matrix complexity. The original
CMA-ES algorithm has a computational complexity of O(𝑛2) for
each iteration [21]. For high-dimensional applications, CMA-ES can
be a resource-intensive and time-consuming solution. To reduce
complexity, there are the following approaches:

• Cholesky-CMA-ES [12]. Modification is based on the Cho-
lesky decomposition for the covariance matrix.

• lm-CMA-ES [12]. Consists of 3 changes: reconstruction of
the Cholesky factors of a covariance matrix using stored
direction vectors and limited memory for their storage, and
a non-standard technique for step-size adaptation.

• sep-CMA-ES [21]. Based on update of the covariance matrix
diagonal elements only and the learning rate increase.

3.4.3 Step-size controlling.

• Two-PointAdaptation (TPA). In Two-Point Step-Size Adap-
tation [1], the first two individuals in the population are sam-
pled along the shift vector from the previous solution, 𝑋𝑡−1,
to the current solution 𝑋𝑡 , as a mirrored pair, symmetric to
𝑋𝑡 . If 𝑋 1

𝑡 is better than 𝑋 2
𝑡 , 𝜎𝑡 is increased as this indicates

that there are better solutions in the direction of the latest
solution shift. Otherwise, it is decreased.

• Median Success Rule (MSR). The Median Success Rule
Step-Size Adaptation [1] is defined as the median individual
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of the current population, 𝑋𝑚 (𝜆)
𝑡 , being better than the 𝑗-th

best individual of the previous population, 𝑋 𝑗 :𝜆
𝑡−1. The idea

is then to increase the step-size if 𝑋𝑚 (𝜆)
𝑡 is fitter than 𝑋

𝑗 :𝜆
𝑡−1

and decrease it otherwise.
• TPA/MSR with CSA. It was observed that TPA and MSR
have a good starting speed at the first iterations, while Cu-
mulative Step-size Adaptation (CSA), the standard step-size
control method of CMA-ES, eventually converges to a higher
value of the objective function. Thus, the sequential use of
two methods – TPA or MSR with CSA – outperforms their
result separately.

3.4.4 Restart strategy. Restart strategies have performed well
on multimodal and noisy optimization benchmarks [14]. BIPOP-
CMA-ES [8] is one of these concepts for CMA-ES. At each restart
one of two scenarios are selected by estimating the function eval-
uation for each of them. The first scenario restarts with doubled
population size and fixed step-size, the second one – with some
small population size and small step-size.

3.4.5 Target function approximation. Our product environment
is a very expensive system in terms of calculating the target func-
tion. If there are time constraints, it becomes impossible to obtain
an optimal solution. Thus, we decided to consider the idea of a
surrogate CMA-ES [15], in which new individuals can be sent
partially or completely to a model trained on the original target
function.

As a surrogate, any machine learning model to build predictions
of the target function can be used. To determine the accuracy of
this model, it is important to use the ranking metric of the obtained
results. Depending on the value of the metric, the number of in-
dividuals or the number of generations to evaluate the objective
function by surrogate model is determined.

3.4.6 Multiple Offspring Sampling framework (MOS). MOS [11]
is a framework that allows to combine algorithms by controlling
their participation in each new generation, depending on their
performance at the previous stage. MOS allows to combine any
metaheuristics optimization algorithms. Our choice was a combi-
nation of DE and CMA-ES.

3.5 Hybrid Multi-Objective CMA-ES
HMO-CMA-ES is a multi-objective optimization algorithm, which
combines four sequentially operating algorithm [13]. Three of them
is a variation of CMA-ES, supplemented by BOBYQA as a warm
start. The order of the algorithms is as follows:

(1) BoundOptimization BYQuadratic Approximation (BOBYQA)
Optimize the weighted target function (9). Trust-region
method BOBYQA is used to quickly approximate the Pareto
front. A solution set of all runs are collected for the starting
population of the following algorithm.

(2) Steady-state MO-CMA-ES (ss-MO-CMA-ES)
Optimize the multi-objective target function (1). This step is
needed to quickly refine the Pareto front.

(3) Increasing population size CMA-ES (IPOP-MO-CMA-ES)

Optimizemulti-objective target function (1). This is theMulti-
Objective CMA-ES, which increases population size in twice
every k iterations.

(4) Restart CMA-ES
Optimize the weighted target function (9). The algorithm is
consistently restarted from the different starting points with
different coefficients𝑤 .

4 GROUPED APPROACH
The networks considered in this paper assume more than 1000 cells,
and since 4 parameters (HBW, VBW, azimuth, tilt) are optimized
for each station, the search space becomes larger than 4000, which
makes the problem of optimizing a radio access network high-
dimensional. In this regard, the network can be divided into clusters
and optimized separately, thereby reducing the dimension of the
search space for the optimal solution.

When the network is divided into clusters, the interference be-
tween the UEs and the BSs is lost at cluster borders. This is due to
the loss of information about the closeness of the BS during the
optimization of each group. Thus, the signal from the border UE is
overestimated, since the noisy signal from the BSs of neighboring
clusters is no longer taken into account.

However, this approach has several advantages. The total time
required to optimize the entire network across clusters is signifi-
cantly less, due to the reduction of the optimization dimension of
problem on each cluster.

In addition, our experiments show that the network final per-
formance after group optimization are higher than after network
optimization without clustering.

A method for constructing a graph representation of a radio
access network andmethods for dividing graphs into clusters (graph
partitioning/graph clustering) is below.

4.1 Graph model
A Radio Access network can be interpreted as a graph that repre-
sents the relationships between each Base Station. Define a graph
𝐺 = (𝑉 , 𝐸) as a set of vertices together with a set of edges. The
set of vertices 𝑉 = {𝐵𝑆1, 𝐵𝑆2, .., 𝐵𝑆𝑁 } includes all BSs of the radio
access network. Initially, all vertices are connected by a set of edges
𝐸, which characterizes the neighborhood of base stations. It is intu-
itively clear that all base stations are not equivalent neighbors to
each other. Thus, it is possible to reflect their relationship through
the function of weights for each edge. As a relationship between
two Base Stations, let’s consider:

• Euclidean Distance,
• Interference, assuming UE stands in the half of distance
between them.

In order to convert into an affinity matrix, for example, built
on the Euclidean distance between BSs, let’s use the following
equation:

𝐴(𝑖, 𝑗) = exp

(
−
∥𝑥𝑖 − 𝑥 𝑗 ∥2

2𝜎2

)
. (10)

As a result, we get a weighted graph 𝐺 that reflects the initial
relationships of stations in the network. Now we can apply graph
partitioning/graph clustering algorithms to it.
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4.2 Spectral Clustering
One of the most popular clustering methods in machine learning,
computer vision, and speech processing is the spectral clustering
algorithm. The spectral clustering algorithm [27] belongs to a class
of methods that use the eigenvalues of the similarity matrix to
combine similar objects into a single cluster. After the Spectral
Clustering has received the affinity matrix as input, the following
steps are taken:

(1) Calculate the graph Laplacian matrix by the formula:

𝐿 = 𝐷 −𝐴, (11)

where 𝐷 is the degree matrix, which is a diagonal matrix
with values that characterize the degrees of the vertices, and
𝐴 is the adjacency matrix.

(2) Use spectral (eigen) gap to select value of 𝑘 parameter.
(3) Form a new matrix from the eigenvectors of 𝐿 that match to

the 𝑘 the largest eigenvalues.
(4) Cluster matrix by k-Means.

4.3 Label Propagation
Label Propagation [20] (LPA) is a semi-supervised machine learning
algorithm based on the distribution of information in the network
to detect the communities.

The main idea is to spread the labels over the vertices. Initially,
each vertex has its own unique label. At each iteration of the prop-
agation, a random vertex assigns itself a label that is most common
among its neighbors. The algorithm converges if no label updates
occurred during the iteration.

4.4 Markov Clustering
Markov Clustering (MCL), proposed by Stijn van Dongen [26],
is an elegant graph clustering algorithm based on simulation of
stochastic flows between vertices of the graph. MCL algorithm is
robust to noise. MCL consists of two main operations: expansion
and inflation, which are applied alternately.

The expansion helps in making the farther nodes or neighbors
reachable. This is achieved mathematically by taking the e-th power
of the matrix:

𝐴𝑒𝑥𝑝𝑎𝑛𝑑 = 𝐴𝑒 . (12)
The inflation helps in making the strong neighbor values are

strengthened and large neighbor values are demoted. This is can be
achieved by raising the column value to non-negative power and
then re-normalizing:

𝐴𝑖𝑛𝑓 𝑙𝑎𝑡𝑒 =
𝐴(𝑖, 𝑗)𝑟∑
𝑘
𝐴(𝑘, 𝑗)𝑟 . (13)

5 EXPERIMENTS
Experimental procedures and results are presented and discussed
in this section. Comparison of algorithms performance based on
the (9) objective function where𝑤 = 0.5.

Each experiment uses a start point 𝑥𝑖 from (9) for optimization
based on the current configuration in the Network. It should be
mentioned that, as these optimization algorithms have stochastic
search which would lead to some changing results in different

iterations to some degree, we make 15 runs for each experiment
and obtain the mean of performance.

All experiments are performed using PC with Intel® Xeon® CPU
E5-2690 v4, 2.60GHz, 64GB RAM, but should note that we didn’t
use parallel computing. The operating system is Ubuntu 16.04.6.

5.1 Virtual Environment
According to the Radio Access Network model described in Section
2, a virtual environment was developed. It allows to evaluate the
performance of the network based on an applied configuration of
control parameters.

The network input parameters are the number of Cells and their
initial configurations, consisting of: coordinates, height, transmitted
power, HBW, VBW, azimuth and tilt. Also, the location of User
Equipment on the network is set.

As an example, we could consider 9 cells and place UEs around
them on the grid. Thus, we build a map of values by calculating the
received signal for each user, taking into account the path losses.
(Fig. 2)
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Figure 2: Example of signal propagation of 9 cells

5.2 Simulation results
5.2.1 40 Dimension Benchmark. Experiments were con-

ducted in 40D for several algorithms, where 10 cells were optimized.
(Fig. 4) 40D was chosen as the most popular size of the cluster at
Grouped Approach.

As surrogates for the CMA-ES algorithm, we use the following
models on fig. 3: Gradient Boosting, XGBoost, Random Forest, De-
cision Tree, and NuSVR. Depending on the quality of the model, at
each iteration, the algorithm decides whether to use a surrogate
for evaluating the objective function or the original function. We
selected the following threshold values 0.2, 0.12, 0.07 of accuracy
according to which 3, 4, or 5 iterations were allocated. The results
show that the Gradient Boosting and XGBoost models have better
accuracy compared to other models. Due to their similar results,
we chose XGBoost as a surrogate for the CMA-ES algorithm.

The results on figures 4 present the performance of objective
function (9) where 𝜔 = 0.5 improvement for each algorithm. The
HMO-CMA-ES algorithm work with original KPIs Coverage, Inter-
ference and combine them by using weight equal to 0.5 to compare
with single-optimization algorithms. Furthermore, the staircase
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Figure 3: Surrogate models training for the 40D problem.
a. Rank-error on each iteration, b. Zoomed rank-errors on each iteration, where the dashed line are thresholds, c. Box-plot of rank-errors.
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Figure 4: Left. Single-objective optimization algorithms performance on 40D. Right. Multi-objective HMO-CMA-ES performance on 40D.

pattern in figure 4 based on the ss-MO-CMA-ES algorithm perfor-
mance which start optimization on the non-dominated set results
from BOBYQA as initial points.

Algorithm Fitness Time, sec
sep-CMA-ES-TPA-CSA 0.9092 34.85

CMA-ES-CSA 0.9089 41.65
JADE 0.9088 35.72
DE 0.9087 33.38

CMA-ES-TPA-CSA 0.9086 40.96
CMA-ES-MSR 0.9082 41.41

sep-CMA-ES-MSR-CSA 0.9080 34.74
surrogate CMA-ES-MSR 0.9080 24.92

CMA-ES-TPA 0.9078 40.80
CMA-ES-MSR-CSA 0.9069 40.79

MOS 0.9069 47.48
lq-CMA-ES-MSR 0.9066 55.39

PSO 0.9059 35.69
HMO-CMA-ES 0.9101 88.93

Table 1: Optimization results for 40D.

On the low-dimension (40D) all algorithms has comparable per-
formance with difference in the 3 decimal after the point. Thus, the
best algorithm has the worst time, because it restarts with bigger

population size, while a surrogate with bad performance reduces
the time. (Tab. 1)

5.2.2 High-dimension scenario. The study of optimization
algorithms in high-dimension problems is one of the main goals
of this paper. Radio Access network includes a large number of
control parameters, which makes the task time-consuming. As
Telecommunication technologies are developing globally and will
be supplemented in the future, the dimension of the task will only
increase.

In order to evaluate the performance of algorithms in high-
dimensions, consider the following settings: 482 cells with 4 param-
eters for each, UE grid at a distance of nearly 10 meters from each
other, 𝑇ℎ𝑑𝑊𝐶 = −90𝑑𝐵𝑚, 𝑇ℎ𝑑𝐼𝑁𝐹 = 3𝑑𝐵 and population size – 10.

The settings of surrogate algorithm for high-dimension are the
same with setting from 5.2.1. It could be noted that the prediction
error of the model is worse on the high-dimension problem. Also,
we use XGBoost model as surrogate for CMA-ES.

The results are shown in the table 2. According to the final perfor-
mance values, the CMA-ES-TPA-CSA outperforms other algorithms.
At the same time, the surrogate CMA-ES significantly reduces the
time for optimization, getting a not excellent final result.

TPA, MSR methods adapt step-size based on the values of the
current population evaluations as opposed to CSA, hence its results.
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Figure 5: Surrogate models training for the high-dimension problem.
a. Rank-error on each iteration, b. Zoomed rank-errors on each iteration, where the dashed line are thresholds, c. Box-plot of rank-errors.
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Figure 6: Optimization algorithms performance on high-dimension.

Algorithm Fitness Time, h
CMA-ES-TPA-CSA 0.8078 2.01

JADE 0.8072 2.07
CMA-ES-TPA 0.8068 2.01

DE 0.8061 1.99
sep-CMA-ES-TPA-CSA 0.8059 2.04
sep-CMA-ES-MSR-CSA 0.8058 2.02

MOS 0.8053 3.06
lq-CMA-ES-MSR 0.8052 2.16

surrogate CMA-ES-MSR 0.8051 1.15
CMA-ES-MSR-CSA 0.8050 2.01

PSO 0.8048 2.02
CMA-ES-MSR 0.8043 2.02
CMA-ES-CSA 0.7980 1.99

Table 2: Optimization results for high-dimension
(482 cells * 4 parameters).

5.2.3 Grouped Approach. Experiments were conducted with
each clustering algorithm. Each cluster was optimized separately
with BS initial configurations as control parameters initial values.
After optimization, the result was combined to the one vector and
applied to the virtual environment for estimating the KPIs final
values. The combination of the final values shows the signal
interference between the clusters.

Markov Spectral Label
Algorithm Fitness Time, h Fitness Time, h Fitness Time, h

BIPOP-CMA-ES 0.813 1.63 0.810 0.809 0.812 1.42
CMA-ES-TPA-CSA 0.809 0.96 0.805 1.63 0.808 0.88

JADE 0.816 0.93 0.816 1.69 0.817 0.86
sep-CMA-ES-MSR 0.814 0.91 0.814 1.73 0.814 0.83

DE 0.817 0.9 0.816 1.65 0.817 0.82
CMA-ES-TPA 0.815 0.95 0.814 1.68 0.816 0.88

MOS 0.814 1.3 – – 0.815 1.16
surrogate CMA-ES-MSR 0.816 0.59 0.814 1.01 0.816 0.56

CMA-ES-MSR-CSA 0.807 0.93 0.805 1.62 0.808 0.82
PSO 0.814 0.94 0.812 1.66 0.814 0.85

CMA-ES-MSR 0.814 0.93 0.813 1.67 0.815 0.83
lq-CMA-ES-MSR 0.815 1.06 0.814 1.71 0.814 0.93
CMA-ES-CSA 0.815 0.97 0.811 1.68 0.815 0.88

Table 3: Optimization results for Grouped Approach.

The Network was modeled like undirected weighted graph 𝐺 =

(𝑉 , 𝐸) where 𝑉 = {𝐵𝑆1, 𝐵𝑆2, ..., 𝐵𝑆𝑛}, |𝑉 | − 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜 𝑓 𝐵𝑆𝑠; 𝐸 =

{(𝑣𝑖 , 𝑣 𝑗 ) | 𝐵𝑆𝑖 , 𝐵𝑆 𝑗 −neighbor BaseStations}; weight function based
on the Euclidean metric of BS locations.

Hyper-parameter settings for each cluster algorithm:

• For MCL – default values for expansion is 2, for inflation –
2. The number of clusters – 94.

• For LPA – since LPA involves a certain amount of random-
ization, we execute each test 10 times and use the means to
obtained the performance. The number of clusters – 113.

• For Spectral clustering – the Elbowmethod estimates optimal
number of clusters. The number of clusters – 24.

The table 3 shows the total time (clusters were optimized se-
quentially) and the final performance for each optimization method.
On Markov clusters all algorithms achieve a higher final KPI for
the entire network. Surrogate CMA-ES is the most efficient algo-
rithm among others both in time and value: getting a high KPI and
significantly reducing the time for optimization.

Analysis of the results of the BIPOP restart strategies showed
that the limit of 1000 function evaluations is not enough to apply it
on 40D and higher dimensions. While for Grouped approach the
dimension is reduced to 10D and in such dimensions BIPOP shows
a comparable result with other algorithms.

1840



GECCO ’21 Companion, July 10–14, 2021, Lille, France

6 CONCLUSION
The purpose of this paper was to explore and analyze the perfor-
mance of evolutionary algorithms for optimization of Radio Access
Network in the high-dimension scenario. The results show that in
most cases they obtained a good performance of signal KPIs. The
CMA-ES algorithm is one of the powerful methods for optimization
which allows to adapt it to many constraints of the problem to
achieve a better performance. Furthermore, these results could be
improved by using the Grouped approach for dividing the Network
into clusters.

The investigation results were used in the production system for
Radio Access Network System which significantly improved the
efficiency of tuning Base Station parameters depend on load hours.
The applied algorithm reduced the time by 60% and improved the
performance by 2.5 times for 2000 dimension.

Radio Access network requires real-time controlling in a high-
dimension environment. Deep Neuroevolution approach, which
combines Evolutionary Algorithms and Neural Networks, is a po-
tentially suitable concept for future research in this area as an
alternative to the Reinforcement Learning approach. Such an idea
could be a potential direction for further work. However, all of
these concepts require an accurate simulation environment to train
the model.
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