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ABSTRACT
Preferential Bayesian optimisation (PBO) deals with optimisation

problems where the objective function can only be accessed via

preference judgments, such as "this is better than that" between

two candidate solutions (like in A/B tests). The state-of-the-art

approach to PBO uses a Gaussian process to model the preference

function and a Bernoulli likelihood to model the observed pair-

wise comparisons. Laplace’s method is then employed to compute

posterior inferences and, in particular, to build an appropriate ac-

quisition function. In this paper, we prove that the true posterior

distribution of the preference function is a Skew Gaussian Process

(SkewGP), with highly skewed pairwise marginals and, thus, show

that Laplace’s method usually provides a very poor approximation.

We then derive an efficient method to compute the exact SkewGP

posterior and use it as surrogate model for PBO employing standard

acquisition functions (Upper-Credible-Bound, etc.). We illustrate

the benefits of our exact PBO-SkewGP in a variety of experiments,

by showing that it consistently outperforms PBO based on Laplace’s

approximation both in terms of convergence speed and computa-

tional time. We also show that our framework can be extended to

deal with mixed preferential-categorical BO, where binary judg-

ments (valid or non-valid) together with preference judgments are

available.
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1 INTRODUCTION
Bayesian optimization (BO) is a powerful tool for global optimisa-

tion of expensive-to-evaluate black-box objective functions [5, 14].
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However, in many realistic scenarios, the objective function to be

optimized cannot be easily quantified. This happens for instance in

optimizing chemical and manufacturing processes, in cases where

judging the quality of the final product can be a difficult and costly

task, or simply in situations where only human preferences are

available, like in A/B tests [20]. In such situations, Preferential

Bayesian optimization (PBO) [11] or more general algorithms for

active preference learning should be adopted [3, 6, 18, 24]. These

approaches require the users to simply compare the final outcomes

of two different experiments and indicate which they prefer. Indeed,

it is well known that humans are better at comparing two options

rather than assessing the value of “goodness” of an option [7, 22].

This contribution is focused on PBO. As in the state-of-the-art

approach for PBO [11], we use a Gaussian process (GP) as a prior

distribution of the latent preference function and a probit likelihood

to model the observed pairwise comparisons. However, our contri-

bution differs from and improves [11] in several directions.

First, the state-of-the-art PBO methods usually approximate the

posterior distribution of the preference function via Laplace’s ap-

proach. On the other hand, we compute the exact posterior distri-

bution, which we prove to be a Skew Gaussian Process (SkewGP)

(recently introduced in [4] for binary classification).
1
Through sev-

eral examples, we show that the posterior has a strong skewness,

and thus any approximation of the posterior that relies on a sym-

metric distribution (such as Laplace’s approximation) results in

sub-optimal predictive performances and, thus, slower convergence

in PBO.

Second, we propose computationally efficient methods to draw

samples from the posterior that are then used to calculate the ac-

quisition function.

Third, we extend standard acquisition functions used in BO to

deal with preference observations and propose a new acquisition

function for PBO obtained by combining the dueling information
gain with the expected probability of improvement.

Fourth, we define an affine probit likelihood to model the observa-

tions. Such a likelihood allows us to handle, in a unified framework,

mixed categorical and preference observations. These two different

types of information are usually available in manufacturing, where

some parameters may cause the process to fail and, therefore, pro-

duce no output. In standard BO, where the function evaluation is a

scalar, a common way to address this problem is by penalizing the

1
In particular, the present works extends the results in [4] by showing that SkewGPs are

conjugate to probit affine likelihoods. This allows us to apply SkewGPs for preference

learning.
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objective function when no output is produced, but this approach

is not suitable in PBO as the output is not a scalar.

The rest of the paper is organized as follows. Section 2 reviews

skew-normal distributions and SkewGP. The main results of the

paper are reported in Section 3, where we show that the posterior

distribution of the latent preference function is a SkewGP under

the proposed affine probit likelihood. The marginal likelihood is

derived and maximized to chose the model’s hyper-parameters. An

illustrative example is presented in 4 to show the drawbacks of

Laplace’s approximation, thus highlighting the benefits of comput-

ing the exact SkewGP posterior distribution. PBO with SkewGP is

discussed in Section 5, where extensive tests with different acqui-

sition functions are reported and clearly show that PBO based on

SkewGP consistently outperforms Laplace’s approximation both in

terms of convergence speed and computational time.

2 BACKGROUND ON SKEW-NORMAL
DISTRIBUTIONS AND SKEW-GAUSSIAN
PROCESSES

In this section we provide details on the skew-normal distribution.

The skew-normal [2, 16] is a large class of probability distributions

that generalize a normal by allowing for non-zero skewness. A

univariate skew-normal distribution is defined by three parameters

location 𝜉 ∈ R, scale 𝜎 > 0 and skew parameter 𝛼 ∈ R and has the

following [16] Probability Density Function (PDF)

𝑝 (𝑧) = 2

𝜎
𝜙

(
𝑧 − 𝜉

𝜎

)
Φ

(
𝛼

(
𝑧 − 𝜉

𝜎

))
, 𝑧 ∈ R,

where 𝜙 and Φ are the PDF and Cumulative Distribution Func-

tion (CDF), respectively, of the standard univariate Normal distri-

bution. Over the years many generalisations of this distribution

were proposed, in particular [1] provided a unification of those

generalizations in a single and tractable multivariate Unified Skew-
Normal distribution. This distribution satisfies closure properties

for marginals and conditionals and allows more flexibility due the

introduction of additional parameters.

2.1 Unified Skew-Normal distribution
A vector z ∈ R𝑝 is distributed as a multivariate Unified Skew-

Normal distribution with latent skewness dimension 𝑠 ,

z ∼ SUN𝑝,𝑠 (𝝃 ,Ω,Δ,𝜸 , Γ), if its probability density function [2, Ch.7]
is:

𝑝 (z) = 𝜙𝑝 (z − 𝝃 ; Ω)
Φ𝑠

(
𝜸 + Δ𝑇 Ω̄−1𝐷−1

Ω (z − 𝝃 ); Γ − Δ𝑇 Ω̄−1Δ
)

Φ𝑠
(
𝜸 ; Γ

) ,

(1)

where 𝜙𝑝 (z − 𝝃 ; Ω) represents the PDF of a multivariate Normal

distribution with mean 𝝃 ∈ R𝑝 and covariance Ω = 𝐷Ω Ω̄𝐷Ω ∈
R𝑝×𝑝 , with Ω̄ being a correlation matrix and 𝐷Ω a diagonal matrix

containing the square root of the diagonal elements in Ω. The
notation Φ𝑠 (a;𝑀) denotes the CDF of 𝑁𝑠 (0, 𝑀) evaluated at a ∈ R𝑠 .
The parameters 𝜸 ∈ R𝑠 , Γ ∈ R𝑠×𝑠 ,Δ𝑝×𝑠 of the SUN distribution are

related to a latent variable that controls the skewness, in particular

Δ is called Skewness matrix.

(a1) 𝑠 = 1, Γ = 1 (a2) 𝑠 = 2, Γ1,2 = 0.8

Figure 1: Density plots for SUN1,𝑠 (0, 1,Δ, 𝛾, Γ). For all plots Γ
is a correlation matrix, 𝛾 = 0, dashed lines are the contour
plots of 𝑦 ∼ 𝑁1 (0, 1).

The PDF (1) is well-defined provided that the matrix

𝑀 :=

[
Γ Δ𝑇

Δ Ω̄

]
∈ R(𝑠+𝑝)×(𝑠+𝑝) > 0, (2)

i.e., 𝑀 is positive definite. Note that when Δ = 0, (1) reduces to

𝜙𝑝 (z − 𝝃 ; Ω), i.e. a skew-normal with zero skewness matrix is a

normal distribution. Moreover we assume that Φ0 (·) = 1, so that,

for 𝑠 = 0, (1) becomes a multivariate Normal distribution.

Figure 1 shows the density of a univariate SUN distribution with

latent dimensions 𝑠 = 1 (a1) and 𝑠 = 2 (a2).

For what follows however it is important to know that [see, e.g.,

2, Ch.7] the distribution is closed under marginalization and condi-

tioning. We have reviewed these results in Appendix A together

with an additive representation of the SUN that is useful for sampling

from the posterior.

A SkewGP [4] is a generalization of a skew-normal distribution

to a stochastic process. Its construction is based on a result derived

by [9] for the parametric case, who showed that the skew-normal

distribution and probit likelihood are conjugate.

To define a SkewGP, we consider here a location function 𝜉 :

R𝑑 → R, a scale (kernel) function Ω : R𝑑 × R𝑑 → R, a skewness
vector function Δ : R𝑑 → R𝑠 and the parameters 𝜸 ∈ R𝑠 , Γ ∈ R𝑠×𝑠 .
A real function 𝑓 : R𝑑 → R is a SkewGP with latent dimen-

sion 𝑠 , if for any sequence of 𝑛 points x1, . . . , x𝑛 ∈ R𝑑 , the vector
[𝑓 (x1), . . . , 𝑓 (x𝑛)] ∈ R𝑛 is skew-normal distributed with param-

eters 𝜸 , Γ and location, scale and skewness matrices, respectively,

given by

𝜉 (𝑋 ) :=


𝜉 (x1)
𝜉 (x2)
.
.
.

𝜉 (x𝑛)

 , Ω(𝑋,𝑋 ) :=


Ω (x1,x1) Ω (x1,x2) ... Ω (x1,x𝑛)
Ω (x2,x1) Ω (x2,x2) ... Ω (x2,x𝑛)

.

.

.
.
.
. ...

.

.

.
Ω (x𝑛,x1) Ω (x𝑛,x2) ... Ω (x𝑛,x𝑛)

 ,
Δ(𝑋 ) := [ Δ(x1) Δ(x2) ... Δ(x𝑛) ] .

(3)

The skew-normal distribution is well defined if the matrix𝑀 =[
Γ Δ(𝑋 )

Δ(𝑋 )𝑇 Ω (𝑋,𝑋 )

]
is positive definite for all 𝑋 = {x1, . . . , x𝑛} ⊂ R𝑑

and for any 𝑛. In that case we write 𝑓 ∼ SkewGP𝑠 (𝜉,Ω,Δ, 𝛾, Γ).
Benavoli et al. [4] shows that this is a well defined stochastic process.

In the next section we connect this stochastic process to preference

learning.

3 SKEWGP AND AFFINE PROBIT
LIKELIHOOD

Consider 𝑛 input points 𝑋 = {x𝑖 : 𝑖 = 1, . . . , 𝑛}, with x𝑖 ∈ R𝑑 , and
a data-dependent matrix𝑊 ∈ R𝑚×𝑛

. We define an affine probit
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likelihood as

𝑝 (𝑊 | 𝑓 (𝑋 )) = Φ𝑚 (𝑊 𝑓 (𝑋 )), (4)

where Φ𝑚 (x) := Φ𝑚 (x; 𝐼𝑚) is the standard𝑚-variate Gaussian CDF

evaluated at x ∈ R𝑚 with identity covariance matrix. Note that

this likelihood model includes the classic GP probit classification

model [17] with binary observations 𝑦1, . . . , 𝑦𝑛 ∈ {0, 1} encoded in

the matrix𝑊 = diag(2𝑦1 − 1, . . . , 2𝑦𝑛 − 1), where𝑚 = 𝑛. Moreover,

as we will show in Corollary 3.3, the likelihood in (4) is equal to

the preference likelihood for a particular choice of𝑊 . This model

however also allows to seamlessly mix classification and preference

information as we will show below. Here we prove how the skew-

normal distribution is connected to the affine probit likelihood,

extending a result proved in [9, Th.1 and Co.4] for the parametric

setting for a standard probit likelihood.
2

Theorem 3.1. Let us assume that 𝑓 (x) is GP distributed with
mean function 𝜉 (x) and covariance function Ω(x, x′), that is 𝑓 (x) ∼
GP(𝜉 (x),Ω(x, x′)), and consider the likelihood 𝑝 (𝑊 | 𝑓 (𝑋 )) =

Φ𝑚 (𝑊 𝑓 (𝑋 )) where𝑊 ∈ R𝑚×𝑛 . The posterior distribution of 𝑓 (𝑋 )
is a SUN:

𝑝 (𝑓 (𝑋 ) |𝑊 ) = SUN𝑛,𝑚 ( ˜𝜉, Ω̃, Δ̃, 𝛾, Γ̃) with

˜𝜉 = 𝝃 , Ω̃ = Ω, Δ̃ = Ω̄𝐷Ω𝑊
𝑇 , 𝛾 =𝑊𝜉, Γ̃ =𝑊 Ω𝑊𝑇 + 𝐼𝑚, (5)

where, for simplicity of notation, we denoted 𝜉 (𝑋 ),Ω(𝑋,𝑋 ) as 𝝃 ,Ω
and Ω = 𝐷Ω Ω̄𝐷Ω .

All the proofs are in Appendix B.We now prove that, a-posteriori,

for a new test point x, the function 𝑓 (x) is SkewGP distributed

under the affine probit likelihood in (4).

Theorem 3.2. Let us assume aGP prior 𝑓 (x) ∼ GP(𝜉 (x),Ω(x, x′)),
the likelihood 𝑝 (𝑊 | 𝑓 (𝑋 )) = Φ𝑚 (𝑊 𝑓 (𝑋 )) with𝑊 ∈ R𝑚×𝑛 , then
a-posteriori 𝑓 is SkewGP with mean function 𝜉 (x), covariance func-
tion Ω(x, x′), skewness function Δ(x, 𝑋 ) = Ω(x, 𝑋 )𝑊𝑇 , and 𝛾, Γ̃ as
in (5).

This is the main result of the paper and allows us to show that,

in the case of preference learning, we can compute exactly the

posterior and, therefore, Laplace’s approximation is not necessary.

3.1 Exact preference learning
We now apply results of Theorem 3.1 and Theorem 3.2 to the case of

preference learning. For two different inputs v𝑘 , u𝑘 ∈ 𝑋 , a pairwise

preference v𝑘 ≻ u𝑘 is observed, where v𝑘 ≻ u𝑘 expresses the pref-

erence of the instance v𝑘 over u𝑘 . A set of𝑚 pairwise preferences

is given and denoted as D = {v𝑘 ≻ u𝑘 : 𝑘 = 1, . . . ,𝑚}.

Likelihood. We assume that there is an underlying hidden func-

tion 𝑓 : R𝑑 → R which is able to describe the observed set of

pairwise preferences D. Specifically, given a preference v𝑘 ≻ u𝑘 ,
then the function 𝑓 is such that 𝑓 (v𝑘 ) ≥ 𝑓 (u𝑘 ). To allow tolerances

to model noise, we assume that value of the hidden function 𝑓 is

corrupted by a Gaussian noise with zero mean and variance 𝜎2
.

We use the likelihood introduced in [8], which is the joint proba-

bility distribution of observing the preferences D given the values

2
[9, Th.1 and Co.4] assumes that the matrix𝑊 is diagonal, but the same results can

straightforwardly extend to generic𝑊 .

of the function 𝑓 at 𝑋 , i.e.,

𝑝 (D | 𝑓 (𝑋 ))

=

𝑚∏
𝑘=1

𝑝 (v𝑘 ≻ u𝑘 |𝑓 (v𝑘 ), 𝑓 (u𝑘 )) =
𝑚∏
𝑘=1

𝑝 (𝑓 (v𝑘 ) − 𝑓 (u𝑘 ) ≥ 0)

=

𝑚∏
𝑘=1

Φ

(
𝑓 (v𝑘 ) − 𝑓 (u𝑘 )√

2𝜎

)
= Φ𝑚

©­­­«
©­­­«

𝑓 (v
1
)−𝑓 (u

1
)√

2𝜎

.

.

.
𝑓 (v𝑚 )−𝑓 (u𝑚 )√

2𝜎

ª®®®¬
ª®®®¬ . (6)

For identifiability reasons, without loss of generality, we set 𝜎2 =
1

2
.
3

Posterior. The posterior distribution of the values of the hidden

function 𝑓 at all x ∈ 𝑋 given the observations D is then:

𝑝 (𝑓 (𝑋 ) | D) = 𝑝 (𝑓 (𝑋 ))
𝑝 (D) Φ𝑚

©­«©­«
𝑓 (v1) − 𝑓 (u1)

· · ·
𝑓 (v𝑚) − 𝑓 (u𝑚)

ª®¬ª®¬ . (7)

In state-of-art PBO [11], a Laplace’s approximation of the pos-

terior 𝑝 (𝑓 (𝑋 ) | D) is used to construct the acquisition function.

The following Corollary shows that the posterior 𝑝 (𝑓 (𝑋 ) | D) is
distributed as a SkewGP.

Corollary 3.3. Consider 𝑓 (x) ∼ GP(𝜉 (x),Ω(x, x′)) and the like-
lihood 𝑝 (D | 𝑓 (𝑋 )) in (6). If we denote by𝑊 ∈ R𝑚×𝑛 the matrix
defined as𝑊𝑖, 𝑗 = 𝑉𝑖, 𝑗 −𝑈𝑖, 𝑗 where𝑉𝑖, 𝑗 = 1 if v𝑖 = x𝑗 and 0 otherwise
and𝑈𝑖, 𝑗 = 1 if u𝑖 = x𝑗 and 0 otherwise. Then the posterior of 𝑓 (𝑋 ) is
given by (5).

In PBO, in order to compute the acquisition functions, we must

be able to draw efficiently independent samples from the posterior

in Theorem 3.2.

Proposition 3.4. Given a test point x, posterior samples of 𝑓 (x)
can be obtained as:

𝑓 (x) ∼ ˜𝜉 (x)+𝐷Ω (x,x) (𝑈0+Ω (x,𝑋 )𝑊𝑇 (𝑊 Ω (𝑋,𝑋 )𝑊𝑇 +𝐼𝑚)−1𝑈1), (8)

𝑈0 ∼ N(0; Ω̄(x, x) − Ω(x, 𝑋 )𝑊𝑇 Γ̃−1𝑊 Ω(x, 𝑋 )𝑇 ),

𝑈1 ∼ T𝜸̃ (0;𝑊 Ω(𝑋,𝑋 )𝑊𝑇 + 𝐼𝑚),

where T𝜸̃ (0; Γ̃) is the pdf of a multivariate Gaussian distribution
with zero mean and covariance Γ̃ truncated component-wise below
−𝜸̃ = −𝑊𝜉 (𝑋 ).

Note that sampling 𝑈0 can be achieved efficiently with standard

methods, however using standard rejection sampling for the vari-

able 𝑈1 would incur in exponentially growing sampling time as

the dimension𝑚 increases. Here we use the recently introduced

sampling technique linear elliptical slice sampling (lin-ess,Gessner
et al. [10]) which improves Elliptical Slice Sampling (ess, Murray

et al. [15]) for multivariate Gaussian distributions truncated on a

region defined by linear constraints. In particular this approach

derives analytically the acceptable regions on the elliptical slices

used in ess and guarantees rejection-free sampling. Since lin-ess is
rejection-free,

4
we can compute exactly the computation complex-

ity of (8): 𝑂 (𝑛3) with storage demands of 𝑂 (𝑛2). SkewGPs have

3
Equivalently, we instead estimate the kernel variance.

4
Its computational bottleneck is the Cholesky factorization of the covariance matrix Γ̃,
same as for sampling from a multivariate Gaussian.
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similar bottleneck computational complexity of full GPs. Finally,

observe that 𝑈1 does not depend on x and, therefore, we do not

need to re-sample𝑈1 to sample 𝑓 at another test point x′. This is
fundamental because acquisition functions are functions of x and,

we need to optimize them in PBO.

Marginal likelihood. Here, we follow the usual GP literature ([17])

and we consider a zero mean function 𝜉 (x) = 0 and a parametric

covariance kernel Ω(x, x′) indexed by 𝜃 ∈ Θ. Typically, 𝜃 contains

lengthscale parameters and a variance parameter. For instance, for

the RBF kernel

Ω(x, x′) := 𝜎2
exp

(
− ∥x − x′∥2

2ℓ2

)
,

we have that 𝜃 = [ℓ, 𝜎].5 The parameters 𝜃 are chosen by maximiz-

ing the marginal likelihood, that for SkewGP is provided hereafter.

Corollary 3.5. Consider a GP prior 𝑓 (x) ∼ GP(𝜉 (x),Ω(x, x′))
and the likelihood 𝑝 (D | 𝑓 (𝑋 )) = Φ𝑚 (𝑊 𝑓 (𝑋 )), then the marginal
likelihood of the observations D is

𝑝 (D) = Φ𝑚 (𝜸̃ ; Γ̃)
(
≥

𝑏∑
𝑖=1

Φ |𝐵𝑖 | (𝜸̃𝐵𝑖
; Γ̃𝐵𝑖

) − (𝑏 − 1)
)
, (9)

with 𝜸̃ , Γ̃ defined in Theorem 3.2 (they depend on 𝜃 ).

If the size of𝑊 is too large the evaluation of Φ𝑚 could become

infeasible, therefore here we use the approximation introduced in

[4], see inequality in (9) where 𝐵1, . . . , 𝐵𝑏 are a partition of the

training dataset into 𝑏 random disjoint subsets, |𝐵𝑖 | denotes the
number of observations in the i-th element of the partition, 𝜸̃𝐵𝑖

, Γ̃𝐵𝑖

are the parameters of the posterior computed using only the subset

𝐵𝑖 of the data (in the experiments |𝐵𝑖 | = 30). Details about the

routine we use to compute Φ |𝐵𝑖 | (·) and the optimization method

we employ to maximise the lower bound in (9) are in Appendix C.

3.2 Mixed classification and preference
information

Consider now a problem where we have two types of information:

whether a certain instance is preferable to another (preference-

like observation) and whether a certain instance is attainable or

not (classification-like observation). Such situation often comes

up in industrial applications. For example imagine a machine that

produces a product whose final quality depends on certain input

parameters. Assume now that certain values of the input parameters

produce no product. In this case we might want to evaluate the

quality of the product with binary comparisons (preferences) along

with a binary class that indicates whether the input configuration

is valid. By using only a preference likelihood or a classification

likelihood we would not be using all information. In this case,

observations are in fact pairs and the space of possibility is Z =

{(valid, v𝑘 ≻ u𝑘 ), (valid, u𝑘 ≻ v𝑘 ), (non-valid, 𝑁𝑜𝑛𝑒)}, where v𝑘
and u𝑘 are respectively the current and reference input. Note that

the reference input is always valid, while the current input could

be valid or not. We propose a new likelihood function to model the

5
In the numerical experiments, we use a RBF kernel with ARD and so we have a

lengthscale parameter for each component of x.

above setting, which is defined as follows:

𝑃 (𝑧𝑘 |𝑓 (v𝑘 ), 𝑓 (u𝑘 )) (10)

=


Φ (𝑓 (v𝑘 )) Φ (𝑓 (v𝑘 ) − 𝑓 (u𝑘 )) , 𝑧𝑘 = (valid, v𝑘 ≻ u𝑘 )
Φ (𝑓 (v𝑘 )) Φ (𝑓 (u𝑘 ) − 𝑓 (v𝑘 )) , 𝑧𝑘 = (valid, u𝑘 ≻ v𝑘 )
Φ (−𝑓 (v𝑘 )) , 𝑧𝑘 = (non-valid, 𝑁𝑜𝑛𝑒).

It is then immediate to write the above likelihood (10) in the form (4)

and, therefore, use both sources of information.We associate to each

point x𝑖 a binary output 𝑦𝑖 ∈ {0, 1} where the class 0 denotes a non-

valid output. In case of valid output, we assume that we conducted𝑚

comparisons obtaining the couples D = {v𝑘 ≻ u𝑘 : 𝑘 = 1, . . . ,𝑚}
where v𝑘 ≻ u𝑘 expresses the preference of the instance v𝑘 over

u𝑘 . The likelihood is then a product of two independent probit

likelihood functions

𝑝
class

(𝑊
class

| 𝑓 (𝑋 )) = Φ𝑛
©­­«


2𝑦1−1 0 · · · 0

0 2𝑦2−1 · · · 0

.

.

.
.
.
.

. . .
.
.
.

0 0 · · · 2𝑦𝑛−1

 𝑓 (𝑋 )
ª®®¬ ,

𝑝
pref

(𝑊
pref

| 𝑓 (𝑋 )) = Φ𝑚
©­«


𝑓 (v1)−𝑓 (u1)
.
.
.

𝑓 (v𝑚)−𝑓 (u𝑚)

ª®¬
Since we assume that the two likelihood are independent we can

compute the overall likelihood:

𝑝 (𝑊
class

,𝑊
pref

| 𝑓 (𝑋 )) = 𝑝
class

(𝑊
class

| 𝑓 (𝑋 ))𝑝
pref

(𝑊
pref

| 𝑓 (𝑋 ))
= Φ𝑛+𝑚 (𝑊 𝑓 (𝑋 )), (11)

with𝑊 =

[
𝑊

class

𝑊
pref

]
∈ R(𝑛+𝑚)×𝑛

, where𝑊
pref

is the matrix of pref-

erences defined as in Corollary 3.3. Therefore, the results in Section

3 still holds in this mixed setting.

4 COMPARISON SKEWGP VS. LAPLACE’S
APPROXIMATION

We provide a one-dimensional illustration of the difference between

Gaussian Process with Laplace’s approximation (GPL) and SkewGP.

Consider the non-linear function 𝑔(𝑥) = 𝑐𝑜𝑠 (5𝑥) + 𝑒−
𝑥2

2 which has

a global maximum at 𝑥 = 0. We assume we can only query this func-

tion through pairwise comparisons. We generate 7 pairwise random

comparisons: the query point 𝑥𝑖 is preferred to 𝑥 𝑗 (that is 𝑥𝑖 ≻ 𝑥 𝑗 )

if 𝑔(𝑥𝑖 ) > 𝑔(𝑥 𝑗 ). Figure 2(top-left) shows 𝑔(𝑥) and the location of

the queried points.
6
Figure 2(bottom-left) shows the predicted pos-

terior preference function 𝑓 (𝑥) (and relative 95% credible region)

computed according to GPL and SkewGP. Both the methods have

the same prior: a GP with zero mean and RBF covariance function

(the hyperparameters are the same for both methods and have been

set equal to the values that maximise Laplace’s approximation to

the marginal likelihood, 𝑙 = 0.35 and 𝜎2 = 0.02). Therefore, the only

difference between the two posteriors is due to the Laplace’s approx-

imation. The true posterior (SkewGP) of the preference function is

skewed, this can be seen from the density plot for 𝑓 (−0.51) in Fig-

ure 2(top-right). Figure 2(bottom-right) shows an example, 𝑓 (0.19),
where SkewGP and Laplace’s approximation differ significantly:

Laplace’s approximation heavily underestimates the mean and the

6
The preferences between the queried points are 1.25 ≻ −1.8, −1.23 ≻ 1.25, 0.18 ≻
−1.23, 0.18 ≻ −2.52, −2.52 ≻ 2.18, −1.8 ≻ −0.5, −1.8 ≻ 0.67.
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Figure 2: Comparison between Laplace’s approximation
(GPL) and the exact posterior (SkewGP). Top-left shows 𝑔(𝑥).
Bottom-left shows the predicted posterior preference func-
tion 𝑓 (𝑥) (continuous lines) and the relative 95% credible re-
gion (dashed lines) for GPL and SkewGP. Right-column re-
ports the density plots for 𝑓 (0.19) (bottom) and 𝑓 (−0.51) (top)
for both models.

support of the true posterior (SkewGP) also evident from Figure

2(bottom-left). These differences determine the poor performance

of PBO based on GPL as we will see in the next sections.

5 DUELING ACQUISITION FUNCTIONS
In sequential BO, our objective is to seek a new data point x which

will allow us to get closer to the maximum of the target function

𝑔. Since 𝑔 can only be queried via preferences, this is obtained by

optimizing w.r.t. x a dueling acquisition function 𝛼 (x, x𝑟 ), where
x𝑟 (reference point) is the best point found so far, that is the point

that has the highest probability of winning most of the duels (given

the observed data D) and, therefore, it is the most likely point

maximizing 𝑔.7 We consider three pairwise modifications of stan-

dard acquisition functions: (i) Upper Credible Bound (UCB); (ii)

Thompson sampling (TH); (iii) Expected Improvement Info Gain

(EIIG).

UCB: The dueling UCB acquisition function is defined as the

upper bound of the minimum width 𝛾% (in the experiments we use

𝛾 = 95) credible interval of 𝑓 (x) − 𝑓 (x𝑟 ).
TH:The dueling Thompson acquisition function is 𝑓𝑗 (x)−𝑓𝑗 (x𝑟 ),

where 𝑓𝑗 is a sampled function from the posterior.

EIIG: We now propose the dueling EIIG that is the combination

of the expected probability of improvement (in log-scale) and the

dueling information gain:

𝑘 log

(
𝐸𝑓 ∼𝑝 (𝑓 |D)

(
Φ

(
𝑓 (x)−𝑓 (x𝑟 )√

2𝜎

)))
− 𝐼𝐺 (x, x𝑟 ),

where 𝐼𝐺 (x, x𝑟 ) = ℎ

(
𝐸𝑓 ∼𝑝 (𝑓 |D)

(
Φ

(
𝑓 (x)−𝑓 (x𝑟 )√

2𝜎

)))
−𝐸𝑓 ∼𝑝 (𝑓 |D)

(
ℎ

(
Φ

(
𝑓 (x)−𝑓 (x𝑟 )√

2𝜎

)))
, with ℎ(𝑝) = −𝑝 log(𝑝) − (1 −

7
By optimizing the acquisition function 𝛼 (x, x𝑟 ) , we aim to find a point that is better

than x𝑟 (also considering the trade-off between exploration and exploitation). After

computing the optimum of the the acquisition function, denoted with x𝑛 , we query

the black-box function for x𝑛
?

≻ x𝑟 . If x𝑛 ≻ x𝑟 then x𝑛 becomes the new reference

point (x𝑟 ) for the next iteration.

𝑝) log(1−𝑝) being the binary entropy function of 𝑝 . This definition

of dueling information gain is an extension to preferences of the

information gain, formulated for GP classifiers in [13]. This last

acquisition function allows us to balance exploration-exploitation

bymeans of the nonnegative scalar𝑘 (in the experiments we use𝑘 =

0.1 (more exploration) and 𝑘 = 0.5). To compute these acquisition

functions, we make explicitly use of the generative capabilities of

our SkewGP surrogated model as well as the efficiency of sampling

the learned preference function.

Note that, [11] use different acquisition functions based on the

Copland’s score (to increase exploration). Moreover, they optimize

𝛼 (x𝑎, x𝑏 ) with respect to both x𝑎, x𝑏 , while x𝑏 is fixed and equal

to x𝑟 in our setting. SkewGP can easily be employed as surrogate

model in [11] PBO setting (and very likely improve their perfor-

mance due to the limits of the Laplace’s approximation). We have

focused on the above acquisition functions (UCB, TH, EIIG) because

they can easily be computed – instead the Copland’s score requires

to numerically compute an integral with respect to x.

6 NUMERICAL EXPERIMENTS
In this section we present numerical experiments to validate our

PBO-SkewGP and compare it with PBO based on the Laplace’s

approximation (PBO-GPL).
8

First, we consider again the maximization of 𝑔(𝑥) = 𝑐𝑜𝑠 (5𝑥) +
𝑒−

𝑥2

2 and the same 7 initial preferences used in Section 4.

We run PBO for 4 iterations and, at each step, we query the point

that maximises the UCB of GPL. We also compute the true posterior

and the true maximum of UCB using SkewGP for comparison. Both

the methods have the same prior: a GP with zero mean and RBF

covariance function (the hyperparameters are fixed to the same

values for both methods, that is the values that maximise Laplace’s

approximation to the marginal likelihood, 𝑙 = 0.35 and 𝜎2 = 0.02).

Therefore, the only difference between the two posteriors is due to

the Laplace’s approximation.

Figure 3 shows, for each iteration, a rowwith three plots. The left

plot reports𝑔(𝑥) and the queried points (𝑥𝑟 is in orange). The central
plot shows the GPL and SkewGP posterior predictive means of

𝑓 (𝑥) − 𝑓 (𝑥𝑟 ) and the relative 95% credible intervals. The maximum

of each UCB is showed with a star marker. The right plot shows the

skewness statistics for the SkewGP predictive posterior distribution

of 𝑓 (𝑥) − 𝑓 (𝑥𝑟 ) as a function of 𝑥 , defined as: 𝑆𝑆 (𝑓 (𝑥) − 𝑓 (𝑥𝑟 )) :=
E[ (𝑓 (𝑥)−𝜇)3]

(E[ (𝑓 (𝑥)−𝜇)2 ])3/2
, with 𝜇 := E [𝑓 (𝑥)], and computed via Monte

Carlo sampling from the posterior.

Figure 3 shows that the Laplace approximation for 𝑓 (𝑥)−𝑓 (𝑥𝑟 ) is
much worse than SkewGP. Moreover, the posterior of 𝑓 (𝑥) − 𝑓 (𝑥𝑟 )
is heavily skewed. The maximum magnitude of 𝑆𝑆 (𝑓 (𝑥) − 𝑓 (𝑥𝑟 ))
is −1.3 (see the relative marginal posteriors in Figure 4(left)).

Note from Figure 3(1st-row, central) that, while the maximum of

UCB for GPL and SkewGP almost coincides in the initial iteration,

they significantly differ in the second iteration, Figure 3(2nd-row,

central): SkewGP’s UCB selects a point very close to the global

maximum, while GPL explores the border of the search space. This

8
A notebook to partially reproduce these results is available at

https://github.com/benavoli/SkewGP.
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Figure 3: PBO run for 4 iterations. In each iteration, a rowwith three plots is showed. The left plot shows the objective function
and the queried points (𝑥𝑟 is in orange). The central plot shows the GPL (blue) and SkewGP (red) posterior predictive means
of 𝑓 (𝑥) − 𝑓 (𝑥𝑟 ) and the relative 95% credible intervals. The maximum of each UCB is showed with a star marker. The right
plot shows the skewness statistics for the SkewGP predictive posterior distribution of 𝑓 (𝑥) − 𝑓 (𝑥𝑟 ). At each step, we query the
point that maximises the UCB of GPL.

again happens in the subsequent two iterations, see 3(3nd-row and

4th-row, central).

This behavior is neither special to this trial nor to the UCB

acquisition function, we repeat this experiment 20 times starting

with 10 initial (randomly selected) duels and using all the three

acquisition functions. We compare GPL versus SkewGP with fixed

kernel hyperparameters (same as above) so that the only difference

between the two algorithms is in the computation of the posterior.
9

We report the average (over the 20 trials) performance, defined as

the value of 𝑔 evaluated at the current optimal point x𝑟 , considered
to be the best by each method at each one of the 100 iterations.

The results are showed in Figure 4(right): SkewGP always out-

performs GPL. This is only due to Laplace’s approximation (hyper-

parameters are the same). In 1D, the differences are smaller for the

Thompson (TH) acquisition function (due to the “noise” from the

random sampling step). However, SkewGP-TH converges faster.

9
In our implementation we compute the acquisition functions via Monte Carlo sam-

pling (2000 samples).

(a) (b)

Figure 4: Left: skewed marginal. Right: convergence speed
(EIIG 𝑘 = 0.1).

6.1 Optimization benchmarks
We have considered for 𝑔(x) the same four benchmark functions

used in [11]: ‘Forrester’ (1D), ‘Six-Hump Camel’ (2D), ‘Gold-Stein’
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(2D) and ‘Levy’ (2D), and additionally ‘Rosenbrock5’ (5D) and ‘Hart-

man6’ (6D). These are minimization problems.
10

Each experiment starts with 10 initial (randomly selected) duels

and a total budget of 100 duels are run. Further, each experiment

is repeated 20 times with different initialization (the same for all

methods) as in [11]. We compare PBO based on GPL versus SkewGP

using the three different acquisition functions described in Section

5: UCB, EIIG (𝑘 = 0.1 and 0.5) and Thompson (denoted as TH). As

before, we show plots of #iterations versus 𝑔(x𝑟 ). In these experi-

ments we optimize the kernel hyperparameters by maximising the

marginal likelihood for both GPL and SkewGP.

Figure 5 reports the performance of the different methods. Con-

sistently across all benchmarks PBO-SkewGP outperforms PBO-

GPL no matter the acquisition function. PBO-SkewGP has also a

lower computational burden as showed in the Table at the bottom

of Figure 5 that compares the median (over 80 trials, that is 20 trials

times 4 acquisition functions) computational time per 100 iterations

in seconds (on a standard laptop).

6.2 Mixed preferential-categorical BO
We examine now situations where certain unknown values of the

inputs produce no-output preference and address it as a mixed

preferential-categorical BO as described in Section 3.2.

First, we consider again 𝑔(𝑥) = 𝑐𝑜𝑠 (5𝑥) + 𝑒−
𝑥2

2 and assume that

any input 𝑥 ≤ −0.2 produces a non-valid output. Figure 6 shows

the predicted posterior preference function 𝑓 (𝑥) (and relative 95%

credible region) computed according to SkewGP.
11

We can see how

SkewGP learns the non-valid region: the posterior mean is negative

for 𝑥 ≲ −0.2 and positive otherwise (the oscillations of the mean

for 𝑥 ≳ −0.2 capture the preferences). This is consistent with the

likelihood in (11).

We consider now the following benchmark optimization problem

proposed in [19]:

min 2+ 1

100
(𝑥2−𝑥2

1
)2+(1−𝑥1)2+2(2−𝑥2)2+7 sin( 1

2
𝑥1) sin( 7

10
𝑥1𝑥2)

with 0 ≤ 𝑥1, 𝑥2 ≤ 5 and we assume that the input is valid if

ℎ(x) = − sin(𝑥1 − 𝑥2 − 𝜋
8
) ≤ 0. We also assume that both the

objective function and ℎ(x) are unknown. The goal is to find the

minimum: 𝑥★ = [2.7450 2.3523] ′ with optimal cost −1.1743. Figure

7(left) shows the level curves of the objective function, the non-

valid zone (grey bands) and the location of the minimizer (red star).

We compare two approaches. The first approach uses PBO-SkewGP

that minimizes the objective plus a penalty term, 10
8

max(0, ℎ(x))2
,

that is non-zero in the non-valid region. Adding a penalty for non-

valid inputs is the most common approach to deal with this type

of problems. The second approach uses a SkewGP based mixed

preferential-categorical BO (SkewGP-mixed) that accounts for the

valid/non-valid points as in Section 3.2. Figure 7(right) shows the

performance of the two compared methods, which is consistent

across the three different acquisition functions: SkewGP-mixed con-

verges more quickly to the optimum. This confirms that modelling

directly this type of problems via the mixed preferential-categorical

likelihood in (11) enables the model to fully exploit the available

10
We converted them into maximizations so that the acquisition functions in Section

5 are well-defined.

11
The preferences are 0.18 ≻ 1.25, 2.18 ≻ 0.67, 0.18 ≻ 2.18, 1.25 ≻ 0.67, 0.18 ≻

0.67.

information. Also in this case, SkewGP allows us to compute the

corresponding posterior exactly.

7 CONCLUSIONS
In this work we have shown that is possible to perform exact pref-

erential Bayesian optimization by using Skew Gaussian processes.

We have demonstrated that in the setting of preferential BO: (i)

the Laplace’s approximation is very poor; (ii) given the strong

skewness of the posterior, any approximation of the posterior that

relies on a symmetric distribution will result to sub-optimal pre-

dictive performances and, therefore, slower convergence in PBO.

We have also shown that we can extend this model to deal with

mixed preferential-categorical Bayesian optimisation, while still

providing the exact posterior. We envisage an immediate extension

of our current approach. Many optimisation applications are sub-

ject to safety constraints, so that inputs cannot be freely chosen

from the entire input space. This leads to so-called safe Bayesian

optimization [12], that has been extended to safe preferential BO

in [21]. We plan to solve this problem exactly using SkewGP.
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Forrester Six Hump Camel Gold Stein Levy Rosenbrock5 Hartman6

GPL PBO 557 2986 3346 4704 4314 5801

SkewGP PBO 102 2276 1430 1211 2615 2178

Figure 5: Averaged results over 20 trials for GPL versus SkewGP on the 6 benchmark functions considering 3 different ac-
quisition functions. The x-axis represents the number of evaluation and the y-axis represents the value of the true objective
function at the current optimum x𝑟 . The table reports the median computational time per 100 iterations in seconds.

Figure 6: Mixed preference-classification BO

Figure 7: Left: level sets of the benchmark function, non-valid domain (grey bands) and location of the minimum (red star).
Right: averaged results across 20 trials for SkewGP penalised PBO vs. SkewGP mixed preference-classification BO using 3
different acquisition functions.
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