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ABSTRACT
This paper presents a test problem generator for multi-objective
bilevel optimization problems with multiple non-cooperative fol-
lowers. In this type of search space the leader and its followers can
have multiple conflicting objectives and interactions between the
leader and each one of the followers. The test problem generator
can be used to instantiate test problems with user-controlled fea-
tures such as the number of followers, convergence and interaction
complexity.
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1 INTRODUCTION
Multi-objective Bilevel Optimization (MBO) is an emergent and
important area. A variety of engineering and scientific applications
can be found from process optimization, game-playing, optimal
control, strategy development, transportation problems, among
others [6]. This kind of problems have been solved using different
approaches which include classical and heuristic methodologies
[2]. Particularly, the Evolutionary Computation community has
proposed different approaches to tackle MBO problems by using
both, evolutionary and swarm intelligence algorithms with success-
ful results in artificial and real-world problems. Regarding single-
objective multi-follower bilevel optimization problems, they have
been studied, from classical approaches to metaheuristic-based pro-
posals [6]. It is worth mentioning that the work on MBO problems
with multiple followers (MBOMFPs) is scarce. A theoretical study
and an interactive algorithm to solve a MBOMFP is reported in [5].

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
GECCO ’21 Companion, July 10–14, 2021, Lille, France
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8351-6/21/07.
https://doi.org/10.1145/3449726.3459495

The usage of an evolutionary algorithm to deal with a MBOMFP is
detailed in [3].

2 MULTI-OBJECTIVE BILEVEL
OPTIMIZATIONWITH MULTIPLE
FOLLOWERS

A multi-objective bilevel optimization problem with multiple inter-
connected followers can be defined as in [5]. Four types of interac-
tions between followers are considered [7]:

• Non-cooperative: The followers are not sharing their deci-
sion variables among them, then, they do not share their
objectives and constraints.

• Cooperative: The decision variables, objective functions and
constraints are completely shared among followers.

• Semi-cooperative: Each follower has different objective func-
tions and constraints but can share the decision variables.

• Reference-uncooperative: Each follower has individual deci-
sion variables but can use some variables as references from
other follower.

In this work, we are focused on such MBOMFPs where followers
are non-cooperative (MBONMFP), because it is the most simple
(but not less complex) multi-follower bilevel optimization problem
[8]. The formal definition of MBONMFP is to:
Minimize

𝐹 ( ®𝑥, ®𝑦 (1) , ®𝑦 (2) , . . . , ®𝑦 (𝑛) ) =

©­­­­­«
𝐹1 ( ®𝑥, ®𝑦 (1) , ®𝑦 (2) , . . . , ®𝑦 (𝑛) )
𝐹2 ( ®𝑥, ®𝑦 (1) , ®𝑦 (2) , . . . , ®𝑦 (𝑛) )

.

.

.

𝐹𝑚𝑢
( ®𝑥, ®𝑦 (1) , ®𝑦 (2) , . . . , ®𝑦 (𝑛) )

ª®®®®®¬
(1)

subject to ( ®𝑥, ®𝑦 (1) , ®𝑦 (2) , . . . , ®𝑦 (𝑛) ) ∈ Ω0 where ®𝑦 (𝑖) , (𝑖 = 1, 2, . . . , 𝑛)
solves

min
®𝑦 (𝑖 )

𝑓 (𝑖) ( ®𝑥, ®𝑦 (𝑖) ) =
(
𝑓
(𝑖)
1 ( ®𝑥, ®𝑦 (𝑖) ), . . . , 𝑓 (𝑖)𝑚𝑖

( ®𝑥, ®𝑦 (𝑖) )𝑇
)

(2)

Note that the 𝑖-th follower (LL) is only interacting with the
leader (UL). Moreover, this allows us to extend previous proce-
dures for proposing test problems [1], but considering multiple
non-cooperative followers.

3 TEST PROBLEM CONSTRUCTION
We suggest the following test problem construction procedure for
a MBONMFP having 𝑛 non-cooperative followers. The proposed
procedure contains the following mappings to meet the desired
properties. Firstly, let us split both, upper and lower level decision
vectors as follows: ®𝑥 = ( ®𝑥1, ®𝑥2, ®𝑥3) ∈ 𝑋1 × 𝑋2 × 𝑋3 = 𝑋 whilst
the 𝑖-th follower decision vector is ®𝑦 (𝑖) = ( ®𝑦 (𝑖)1 , ®𝑦 (𝑖)2 , ®𝑦 (𝑖)3 ) ∈ 𝑌

(𝑖)
1 ×
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𝑌
(𝑖)
2 ×𝑌

(𝑖)
3 = 𝑌 (𝑖) . Now, for the 𝑖-th follower: 𝑝 (𝑖) : 𝑋1 ×𝑌

(𝑖)
1 → R

controls the interaction complexity between the leader and the 𝑖-th
follower. 𝑞 (𝑖) : 𝑌 (𝑖)

2 → R is defined to add convergence complexity
to the 𝑖-th follower problem. 𝑟 (𝑖)1 , 𝑟

(𝑖)
2 : 𝑋3 × 𝑌

(𝑖)
3 → R are used to

control the Pareto-optimal front.
For the upper level optimization problem: 𝑃 : 𝑋1 ×𝑌

(1)
1 ×𝑌

(2)
1 ×

· · · × 𝑌
(𝑛)
1 → R is defined to control the interaction between the

followers and the leader. Here, 𝑃 ( ®𝑥1, ®𝑦 (1)1 , . . . , ®𝑦 (𝑛)1 ) = 0 if and only
if ( ®𝑥1, ®𝑦 (1)1 , . . . , ®𝑦 (𝑛)1 ) is part of a feasible solution and is related
to an optimal solution at the upper level. 𝑄 : 𝑋2 → R is used
to control the convergence complexity within the leader problem.
𝑅1, 𝑅2 : 𝑋3 × 𝑌

(1)
3 × 𝑌

(2)
3 × · · · × 𝑌

(𝑛)
3 → R denote conflicting ob-

jectives affected by both, leader and followers. Thus, the following
optimization problem is defined to meet the properties presented
in [1]. Minimize:

𝐹 ( ®𝑥, ®𝑦 (1) , ®𝑦 (2) , . . . , ®𝑦 (𝑛) ) = (3)(
𝑃 ( ®𝑥1, ®𝑦 (1)1 , . . . , ®𝑦 (𝑛)1 ) +𝑄 ( ®𝑥2) + 𝑅1 ( ®𝑥3, ®𝑦 (1)3 , . . . , ®𝑦 (𝑛)3 )

𝑃 ( ®𝑥1, ®𝑦 (1)1 , ®𝑦 (2)1 , . . . , ®𝑦 (𝑛)1 ) +𝑄 ( ®𝑥2) + 𝑅2 ( ®𝑥3, ®𝑦 (1)3 , . . . , ®𝑦 (𝑛)3 )

)
(4)

subject to: ®𝑦 (𝑖) ∈ argmin ®𝑦 (𝑖 ) ∈𝑌 (𝑖 ) {𝑓 (𝑖) ( ®𝑥, ®𝑦 (𝑖) )}, where

𝑓 (𝑖) ( ®𝑥, ®𝑦 (𝑖) ) =
(
𝑝 (𝑖) ( ®𝑥1, ®𝑦 (𝑖)1 ) + 𝑞 (𝑖) ( ®𝑦 (𝑖)2 ) + 𝑟 (𝑖)1 ( ®𝑥3, ®𝑦 (𝑖)3 )
𝑝 (𝑖) ( ®𝑥1, ®𝑦 (𝑖)1 ) + 𝑞 (𝑖) ( ®𝑦 (𝑖)2 ) + 𝑟 (𝑖)2 ( ®𝑥3, ®𝑦 (𝑖)3 )

)
(5)

Here,𝑝 (𝑖) must satisfy the following:min ®𝑦 (𝑖 ) 𝑝
(𝑖) ( ®𝑥, ®𝑦 (𝑖) ) = 0, for all 𝑖 =

1, . . . , 𝑛. Moreover, here

𝑃

(
®𝑥1, ®𝑦 (1)1 , ®𝑦 (2)1 , . . . , ®𝑦 (𝑛)1

)
= 𝑃 ′( ®𝑥1) +

𝑛∑
𝑖=1

𝑝 (𝑖)
(
®𝑥1, ®𝑦 (𝑖)1

)
(6)

which implies that min ®𝑦 (𝑖 )
1

𝑃 ( ®𝑥1, ®𝑦 (1)1 , ®𝑦 (2)1 , . . . , ®𝑦 (𝑛)1 ) = 𝑃 ′( ®𝑥1) if the

solution ( ®𝑥1, ®𝑦 (1)1 , ®𝑦 (2)1 , . . . , ®𝑦 (𝑛)1 ) corresponds to a feasible solution.

3.1 Example
Assume that 𝑋1 ⊂ R𝑘 , 𝑋2 ⊂ R𝑢 and 𝑋3 ⊂ R2 at the UL; and for
the LL, 𝑌 (𝑖)

1 ⊂ R𝑘 , 𝑌 (𝑖)
2 ⊂ R𝑙 and 𝑌 (𝑖)

3 ⊂ R2. Here, 𝑘 controls the
number of variables interacting between follower 𝑖 and the leader;
𝑢 and 𝑙 control the number of variables that add complexity in
convergence at UL and LL, respectively. If 𝐷𝑢𝑙 and 𝐷𝑙𝑙 denotes the
UL and LL number of decision variables, respectively, we suggest
𝑘 = min{𝐷𝑢𝑙 , 𝐷𝑙𝑙 }/2, 𝑢 = 𝐷𝑢𝑙 − 𝑘 − 2, 𝑙 = 𝐷𝑙𝑙 − 𝑘 − 2.

In this example, let us consider an UL uni-frontal problem, each
follower is also an uni-frontal problem. Note that, 𝑋1 = 𝑌1 =

[−10, 10]𝑘 , 𝑋2 = [−10, 10]𝑢 , 𝑌2 = [−10, 10]𝑙 and 𝑋3 = 𝑌3 = [0, 1]2.

𝑝 (𝑖) ( ®𝑥1, ®𝑦 (𝑖)1 ) =
𝑘∑
𝑗=1

(𝑥1, 𝑗
𝑖

− 𝑦
(𝑖)
1, 𝑗

)2
, 𝑞 (𝑖) ( ®𝑦 (𝑖)2 ) =

𝑙∑
𝑗=1

(
𝑦
(𝑖)
2, 𝑗

)2

𝑟
(𝑖)
1 ( ®𝑥3, ®𝑦 (𝑖)3 )) =


𝑥3,1 + ⌊3𝑦 (𝑖)3,1 ⌋ + 𝑦

(𝑖)
3,2 , if 𝑖 mod 2 = 0

𝑥3,1 + ⌊3𝑦 (𝑖)3,1 ⌋ +
(
𝑦
(𝑖)
3,2

)2
, otherwise

𝑟
(𝑖)
2 ( ®𝑥3, ®𝑦 (𝑖)3 )) =

𝑥3,2 − ⌊3𝑦 (𝑖)3,1 ⌋ + 1 −
√
|𝑦 (𝑖)3,2 | if 𝑖 mod 2 = 0

𝑥3,2 − ⌊3𝑦 (𝑖)3,1 ⌋ + (𝑦 (𝑖)3,2 − 1)2 otherwise

𝑃

(
®𝑥1, ®𝑦 (1)1 , ®𝑦 (2)1 , . . . , ®𝑦 (𝑛)1

)
=

𝑘∑
𝑗=1

(𝑥1, 𝑗 − 1)2 +
𝑛∑
𝑖=1

𝑝 (𝑖)
(
®𝑥1, ®𝑦 (𝑖)1

)
𝑅
(𝑖)
1 ( ®𝑥3, ®𝑦 (1)3 , ®𝑦 (2)3 , . . . , ®𝑦 (𝑛)3 ) = ⌊(𝑛 + 1)𝑥3,1⌋ + 𝑥3,2 (7)

𝑅
(𝑖)
2 ( ®𝑥3, ®𝑦 (1)3 , ®𝑦 (2)3 , . . . , ®𝑦 (𝑛)3 ) = −⌊(𝑛 + 1)𝑥3,1⌋ + 1 −

√
𝑥3,2
𝜃

(8)

𝑄 ( ®𝑥2) =
𝑢∑
𝑗=1

(𝑥2, 𝑗 − 1)2, 𝜃 = 1 + 9
𝑛

𝑛∑
𝑖=1

1/3≤𝑦 (𝑖 )
3,1 <2/3

𝑦
(𝑖)
3,1 , (9)

where 𝜃 is used to determine the LL variable values that let the
leader find well distributed solutions at the UL Pareto-optimal front.
Here, the 𝑖-th follower has non-dominated solutions for a given
®𝑥 ∈ 𝑋 when 𝑦

(𝑖)
1, 𝑗 = 𝑥1/ 𝑗, ®𝑦 (𝑖)2 = ®0, and ®𝑦 (𝑖)3 ∈ 𝑌

(𝑖)
3 . Besides, the

non-dominated solutions at the upper level are obtained when
®𝑥1 = ®1, ®𝑥2 = ®1, ®𝑥3 ∈ 𝑋3, ®𝑦 (𝑖) generate a non-dominated solution for
the 𝑖-th follower and 1/3 ≤ 𝑦

(𝑖)
3,1 < 2/3, 𝑦 (𝑖)3,2 ∈ [0, 1].

This problems was solved by a nested MOEA/D-DE [4] (with
parameters 𝐹 = 0.5, 𝐶𝑅 = 1, 𝜃 = 20, 𝑝𝑚 = 1/10, 𝐻 = 299, 𝑇 = 20)
and obtained the following Inverted Generation Distance (IGD)
values: minimum (0.2437), median (0.3108) and maximum (0.4414)
from 11 independent runs (source code available at bi-level.org).

4 CONCLUSIONS
In this work, we have proposed a test problem generator for multi-
objective bilevel optimization problems with multiple non-coopera-
tive followers. From it, we exemplify the usage by proposing a
scalable test problem in which the user can control the number
of followers, the number of decision variables, the convergence
complexity and the distribution of the Pareto-optimal front. After
that, a nested MOEA/D-DE algorithm was used to solve this partic-
ular test instance, being unable to get a good approximation to the
optimum Pareto front.
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