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ABSTRACT
This paper presents a two-phase surrogate approach for high-
dimensional constrained discrete multi-objective optimization. In
Phase I, the algorithm searches for a feasible point using surro-
gates for the constraints and objectives. In Phase I iterations, the
algorithm identifies the infeasible points that are nondominated ac-
cording to three criteria: number of constraint violations, maximum
constraint violation, and sum of squares of constraint violations.
Moreover, the function evaluation point is chosen from a large
number of trial points in the neighborhood of a current nondomi-
nated point according to the predicted values of the above criteria.
In Phase II, the algorithm searches for Pareto optimal solutions
using surrogates for the objectives and constraints. In Phase II it-
erations, the function evaluation point is chosen from trial points
that are predicted to be feasible and nondominated in the neigh-
borhood of a current nondominated point using distance criteria in
the objective and decision spaces. The algorithm is implemented
using RBF surrogates and tested on the Mazda benchmark problem
that has 222 discrete variables, 54 constraints and 2 objectives. The
proposed method found feasible points much more quickly and ob-
tained much better sets of nondominated objective vectors than an
NSGA-II implementation given a budget of only 3330 simulations.
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1 INTRODUCTION
Surrogate approaches have been proposed for computationally
expensive multi-objective optimization (e.g., [1, 12, 16, 19, 25]) and
some of these methods can handle black-box inequality constraints
(e.g., [5, 8, 11, 15, 22, 24]). However, relatively few surrogate-based
or surrogate-assisted optimization methods have been proposed
for problems with discrete variables [3]. Even fewer methods can
handle high-dimensional multi-objective problems with discrete
variables and many black-box constraints. For example, Brownlee
and Wright [4] proposed a variant of NSGA-II for constrained
mixed-integer multi-objective optimization that uses radial basis
function (RBF) networks for fitness approximation and applied it
to a building design problem with 50 decision variables, of which
20 are discrete variables. Moreover, Ohtsuka et al. [17] proposed
a decomposition-based constrained multi-objective evolutionary
algorithmCMOEA/D that uses an Extreme LearningMachine (ELM)
and applied it to the 3-car Mazda benchmark problem [6, 13] that
involves 222 discrete variables, 54 black-box inequality constraints
and 2 objective functions. However, the ELM-assisted CMOEA/D
in [17] aggregated the constraints for each type of car, resulting in
only 3 constraints that are each modeled by an ELM. This paper
proposes a two-phase surrogate approach to handle challenging
multi-objective problems such as the Mazda benchmark.

Formally, the focus of this paper is on solving the following
multi-objective optimization problem:

min F (x) = (f1(x), . . . , fk (x))
s.t.

G(x) = (д1(x), . . . ,дm (x)) ≤ 0
x (i) ∈ Di ⊂ R with |Di | < ∞, i = 1, . . . ,d

(1)

where x (i) is the ith decision variable and the ith entry of x ∈ Rd ,
and Di is the finite set of the possible discrete ordinal values of
x (i). In practical applications, the values in Di are not necessarily
integers. They could be fractional settings that are allowed for
the ith variable. For example, x (i) could take on values from the
set Di = {1.2, 1.5, 2.3, 2.5}. Moreover, the objective functions fi :
Rd −→ R, i = 1, . . . ,k and constraint functions дj : Rd −→ R,
j = 1, . . . ,m are black-box and computationally expensive. For
example, the values of these functions might be obtained by running
an expensive simulation. For now, assume that there is no noise in
the calculation of the fi ’s and дj ’s. Future work will address the
issue of noise in the objective and constraint functions.

In problem (1), the finite set
∏d

i=1 Di ⊂ R
d is the search space

for problem. The lower and upper bounds of the variables are given
by ℓi := minDi and ui := maxDi for i = 1, . . . ,d . Clearly, the
box [ℓ,u] =

∏d
i=1[ℓi ,ui ] encloses the search space of problem (1).

Throughout this paper, assume that one simulation at a given point
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x in the search space yields the values of all the objective and
constraint functions at x , i.e., all the components of F (x) and G(x).

The POSEIDON algorithm [23] is a recently proposed surrogate
approach that can handle computationally expensive and high-
dimensional constrained multi-objective problems with ordinal
discrete variables and many black-box constraints, i.e., problem (1)
with large dimension d and number of constraintsm. POSEIDON
using RBF surrogates for each of the objectives and constraints
significantly outperformed an implementation of NSGA-II on the
3-car Mazda Benchmark problem that has 222 ordinal discrete deci-
sion variables, 54 black-box inequality constraints and 2 objective
functions [6] when given a relatively limited computational budget.
Note that in contrast to the ELM-assisted CMOEA/D in [17], POSEI-
DON uses a surrogate for each for the 54 constraints in the Mazda
benchmark. However, POSEIDON assumes that a feasible initial
point is given, which is sometimes difficult to obtain in some appli-
cations. This paper proposes the Two-Phase POSEIDON algorithm,
which extends the capabilities of POSEIDON to solve constrained
discrete multi-objective problems when no feasible initial point is
provided. Moreover, this paper also proposes a modification to the
original POSEIDON algorithm that improves its ability to explore
and expand the extremes of the set of nondominated objective vec-
tors in the objective space. Finally, the main ideas in Two-Phase
POSEIDON can be used for surrogate-assisted evolutionary algo-
rithms for constrained discrete multi-objective optimization.

In Phase I of the proposed method, all sample points are infeasi-
ble and the algorithm searches for a feasible point using surrogates
for the constraints and objectives. In each iteration of Phase I, the
algorithm identifies the infeasible points that are nondominated ac-
cording to three criteria: number of constraint violations, maximum
constraint violation, and sum of squares of the constraint violations.
Moreover, the next simulation point is chosen from a large num-
ber of trial points in the neighborhood of a current nondominated
point according to the predicted values of the above criteria. In
Phase II, the algorithm searches for Pareto optimal solutions using
surrogates for the objectives and constraints. In each iteration of
Phase II, the next simulation point is chosen from trial points that
are predicted to be feasible and predicted to be nondominated in
the neighborhood of a current nondominated point using distance
criteria in the decision and objective spaces.

The proposed Two-Phase POSEIDON algorithm is implemented
using RBF surrogates and tested on the 3-car Mazda benchmark
problem using a computational budget of only 15d = 3330 simu-
lations. The proposed algorithm found feasible points much more
quickly and yielded much better sets of nondominated objective
vectors than an implementation of NSGA-II that uses discrete vari-
able encoding. In addition, the method significantly improves on an
initial feasible design on the Mazda benchmark given the limited
computational budget.

2 THE TWO-PHASE POSEIDON ALGORITHM
2.1 Algorithm Description
This paper proposes the Two-Phase POSEIDON (Pareto Optimiza-
tion using Surrogates for Expensive Inequality-constrained Discrete

Ordinal and Nonlinear problems) algorithm for solving the com-
putationally expensive constrained discrete multi-objective opti-
mization problem in (1). The proposed method is an extension of
the surrogate-based POSEIDON algorithm in [23] that employs
a two-phase approach and can be used when no feasible point is
available among the initial sample points. The original POSEIDON
algorithm assumes that a feasible initial point is provided but this
might not be the case in some practical applications. The first phase
of Two-Phase POSEIDON finds a feasible point while the second
phase searches for Pareto optimal solutions or at least a set of non-
dominated solutions that improve on the feasible point found in
the first phase. Because the objective and constraint functions are
computationally expensive, the two phases are implemented using
a relatively limited computational budget of simulations and both
phases employ surrogates for the objective and constraints. The
use of a two-phase approach in the context of surrogate-based con-
strained optimization with continuous variables has been employed
in the COBRA algorithm [21]. However, Two-Phase POSEIDON
not only deals with discrete variables, it uses different strategies
for using surrogates to select sample points in both phases.

Two-Phase POSEIDON begins by selecting an initial set of points
in the search space where the objective and constraint functions
will be evaluated. These points could be generated uniformly at
random from the discrete search space, or by using a space-filling
design that is suitable for discrete search spaces. Then the algorithm
runs simulations to obtain the objective and constraint function
values at the initial points to obtain information needed to fit the
initial surrogate models. For problems with black-box constraints,
there is no guarantee that a feasible point is available among the
initial points. Hence, Phase I of the algorithm uses surrogate models
for the constraints and the objectives to find a feasible point for the
problem. Then, Phase II searches for Pareto optimal solutions using
again the surrogates for the constraints and objectives. If there is a
feasible point among the initial sample points, then the algorithm
simply proceeds to Phase II as was done in the original POSEIDON
algorithm [23].

In each iteration of Phase I, the algorithm fits or updates the
surrogates, one for each objective function and for each inequality
constraint function, and then identifies or updates the set of infeasi-
ble sample points that are nondominated according to three criteria:
number of constraint violations, maximum constraint violation, and
sum of squares of the constraint violations. Then, the algorithm
randomly chooses one of the current nondominated points and
then selects the next point where the simulation will take place
from a large number of trial points in the neighborhood of the
chosen nondominated point. The trial points are generated by per-
turbing some or all of the components of the chosen nondominated
point. The generation of trial points are described below after the
pseudocode. To obtain the simulation point, the algorithm uses
the surrogates for the constraints to identify the trial points that
are predicted to be nondominated according to the predicted val-
ues of the above criteria, namely predicted number of constraint
violations, maximum predicted constraint violation, and sum of
squares of the predicted constraint violations. Note that if there
are trial points that are predicted to be feasible, then the predicted
values for the above criteria are all zero for these trial points. In
this case, the algorithm determines which of these trial points are
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predicted to be nondominated based on the surrogates of the objec-
tives, and among these trial points, selects the one that is farthest
from all previously evaluated points to promote exploration of the
search space. On the other hand, if none of the trial points are
predicted to be feasible, then the algorithm collects all trial points
with the minimum number of predicted constraint violations from
among those that are predicted to be nondominated according to
the predicted values of the three criteria above. The simulation
point is then chosen from these trial points as the one with the best
weighted combination of scaled values of the maximum predicted
constraint violation (MPCV criterion) and the sum of squares of the
predicted constraint violations (SPCV criterion). Next, a simulation
is performed to obtain the objective and constraint values at the
chosen trial point. The algorithm goes through the iterations in
Phase I until a feasible point is found, after which the algorithm
proceeds to Phase II.

In each iteration of Phase II, the algorithm again fits the surro-
gates of the objectives and constraints and identifies or updates
the nondominated set of points from all previous feasible sample
points. In contrast to Phase I, nondomination among feasible points
in Phase II is now based on the objective function values. Next, the
algorithm chooses one of the current nondominated points in the
decision space and perturbs it many times to generate a large num-
ber of trial points in the neighborhood of the nondominated point.
The nondominated point that will be perturbed may be chosen uni-
formly at random among all current nondominated points (Random
(RND) strategy) or it may be chosen to be the one whose objective
vector is the most isolated (in terms of Euclidean distance) from
the other nondominated objective vectors in the objective space
(Objective Space Distance (OSD) strategy). These two strategies were
previously employed in the original version of POSEIDON [23].
This paper employs another strategy for POSEIDON called the
Extreme Objective Vector (EOV) strategy where the nondominated
point chosen minimizes one of the objective functions among all
current nondominated points. This strategy is meant to promote
exploration of the extremes of the current approximate Pareto front.

From the collection of all trial points in a given iteration of
Phase II, the surrogates for the constraints are used to identify the
trial points that are predicted to be feasible or those that have the
minimum number of predicted constraint violations. Among these
eligible trial points, the surrogates for the objectives are used to
identify the trial points that are predicted to be nondominated by
the other eligible trial points and by the current nondominated
points. From this subset of eligible trial points that are predicted to
be nondominated, we then select the best trial point according to a
weighted combination of scaled values of two criteria: (i) minimum
distance between the predicted objective vector of the trial point
and the current nondominated objective vectors (in the objective
space) (MDOS criterion); and (ii) minimum distance between the trial
point and the current nondominated points (in the decision space)
(MDDS criterion). Hence, the algorithm selects a trial point whose
predicted objective vector is far from the nondominated objective
vectors to promote good spacing in the approximate Pareto front in
the objective space. At the same time, it also selects a trial point that
is far from the current nondominated points to promote exploration
of the decision space. The weights for these two criteria are set
with more weight on the former than the latter. Once the best trial

point is selected, a simulation is performed to obtain the objective
and constraint values at that point. The algorithm goes through the
iterations in Phase II until the computational budget is exhausted.

Below is a pseudo-code that outlines the main steps of the Two-
Phase POSEIDON algorithm for solving the constrained discrete
multi-objective optimization problem of the form (1) .

Two-Phase POSEIDON Algorithm

(1) (Initial Simulations) Perform simulations to obtain objective
and constraint function values at initial set of points in the
search space. If one of these initial points is feasible, go to
Step 3 (Phase II).

(2) (Phase I Iterations) While a feasible sample point has not
been found or while the computational budget has not been
exhausted do:

(a) (Determine Nondominated Set) Identify the previously eval-
uated points (all infeasible) that are nondominated ac-
cording to three criteria: number of constraint violations,
maximum constraint violation, and sum of squares of the
constraint violations.

(b) (Fit Surrogates) Fit or update surrogate for each objective
and each constraint.

(c) (Generate Trial Points) Select a point uniformly at random
from the current set of nondominated points (all infea-
sible) and generate a large number of trial points in its
neighborhood.

(d) (Identify Trial Points Predicted to be Nondominated) Evalu-
ate the surrogates for the constraints at the trial points in
Step 2(c) and identify the trial points that are predicted to
be nondominated according to the predicted values of the
three criteria above.

(e) (Select Simulation Point) If one of the trial points in Step 2(d)
is predicted to be feasible, then do (i) below, else do (ii).
(i) Evaluate the surrogates for the objectives at the trial

points that are predicted to be feasible and determine
which of these trial points are predicted to be nondomi-
nated based on the surrogates of the objectives. Among
these trial points, select the one that is farthest from all
previously evaluated points.

(ii) Collect all trial points with the minimum number of
predicted constraint violations from among those that
are predicted to be nondominated based on the predicted
values of the three criteria above. From these trial points,
choose the one with the best weighted combination of
scaled values of the MPCV and SPCV criteria.

(f) (Simulate) Perform one simulation to obtain the objective
and constraint function values at the trial point chosen in
Step 2(e).

end.
(3) (Phase II Iterations) While the computational budget has not

been exhausted, do:
(a) (Determine Nondominated Set) Identify the set of nondom-

inated points among feasible points obtained so far.
(b) (Fit Surrogates) Fit or update surrogate for each objective

and each constraint.
(c) (Generate Trial Points) Select one of the nondominated

points using the RND, OSD or EOV strategies and generate
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a large number of trial points in the neighborhood of the
chosen nondominated point.

(d) (Determine Eligible Trial Points) Evaluate the surrogates for
the constraints at the trial points in Step 3(c) and identify
trial points that are predicted to be feasible or those with
the minimum number of predicted constraint violations.

(e) (Identify Eligible Points Predicted to be Nondominated) Eval-
uate the surrogates for the objectives at the eligible trial
points obtained in Step 3(d) and identify those that are
predicted to be nondominated by the other eligible trial
points and by the current nondominated points.

(f) (Select Simulation Point) From the eligible trial points pre-
dicted to be nondominated in Step 3(e), choose the best
one according to a weighted combination of scaled values
of the MDOS and MDDS criteria.

(g) (Simulate) Perform one simulation to obtain the objective
and constraint function values at the trial point chosen in
Step 3(f).

end.
(4) (Return Nondominated Set) Return set of nondominated points

and corresponding objective vectors and constraint function
values.

Note that the criteria used for nondomination differ in the two
phases. In Phase I, the nondominated set of points is identified
from the set of all previous sample points, which are all infeasible,
based on the number of constraint violations, maximum constraint
violation, and sum of squares of the constraint violations. In Phase
II, the nondominated set of points is obtained from all previous
feasible sample points using their objective function values.

In each iteration of Phase I or Phase II, a large number of trial
points is generated in the neighborhood of the chosen nondomi-
nated point. A trial point is obtained by perturbing some of the com-
ponents (values of the variables) of the chosen nondominated point.
As with the original POSEIDON [23], each component is perturbed
with a certain probability denoted by ppert. A perturbation consists
of changing the current setting of a variable by either increasing
or decreasing its value by a few discrete steps. The neighborhood
depth parameter, denoted by depthnbhd, indicates the fraction of the
number of settings that the variable is allowed to increase or de-
crease. For example, suppose the current setting of variable x (i) in
the current best point is 1.2 and there are 10 possible settings given
by {0.5, 0.7, 0.9, 1.0, 1.2, 1.5, 1.8, 1.9, 2.0, 2.2}. If depthnbhd = 20%,
then x (i) is allowed to take 20% of the possible discrete settings for
that variable above or below the current setting. Hence, x (i) may
be increased or decreased from 1.2 up to 0.2(10) = 2 discrete steps,
and so, x (i) may take on the possible values {0.9, 1.0, 1.5, 1.8}. Note
that the current setting of 1.2 is excluded from the possible values,
to force the value of x (i) to change.

2.2 Radial Basis Function Interpolation
The Two-Phase POSEIDON algorithm can be implemented using
any type of surrogate, including popular choices such as Kriging
or Gaussian process modeling [9], radial basis functions (RBF) (e.g.,
[1, 21]) and neural networks (e.g., [7]). The numerical experiments
below use the RBF interpolation model in Powell [20], which dif-
fers from the more popular RBF network in the machine learning

literature. In this RBF model, each data point is a center, the ba-
sis functions are not necessarily Gaussian, and training involves
solving a linear system that has desirable mathematical properties.
This RBF model is suitable for applying Two-Phase POSEIDON on
the Mazda benchmark because it has been successfully applied to
high-dimensional problems with hundreds of decision variables and
many black-box constraints (e.g., see [2, 21]). In contrast, Kriging
models tend to have numerical issues and can be time-consuming
to build on high dimensional problems with hundreds of variables.

To describe how to train this RBF model, suppose we are given
n distinct points x1, . . . , xn ∈ Rd and the function values u(x1), . . .,
u(xn ), where u(x) is either an objective or constraint function. The
RBF interpolation model from Powell [20] has the form:

s(x) =
n∑
i=1

λiϕ(∥x − xi ∥) + p(x), x ∈ Rd ,

where ∥ · ∥ is the Euclidean norm, λi ∈ R for i = 1, . . . ,n, p(x) is a
linear polynomial in d variables, and ϕ has the cubic form: ϕ(r ) = r3.
The function ϕ can take other forms such as the thin plate spline
(ϕ(r ) = r2 log r ) and the Gaussian form (ϕ(r ) = exp(−γr2), where γ
is a hyperparameter). A cubic RBF model is used because it does not
require a hyperparameter that needs to be tuned and also because
of its success in prior RBF methods (e.g., [21]). More details about
how to fit this model are found in Powell [20].

3 NUMERICAL EXPERIMENTS
3.1 Description of the Mazda Benchmark
The proposed Two-Phase POSEIDON algorithm is tested on the
3-car Mazda Benchmark problem [10, 13, 18], which was jointly
developed by the Mazda Motor Corporation, Japan Aerospace Ex-
ploration Agency, and Tokyo University of Science. This benchmark
problem is a constrained discrete multi-objective optimization prob-
lem involving 222 ordinal discrete variables representing the thick-
nesses of structural parts, 54 inequality constraints such as collision
safety performance requirements, and 2 objective functions one
of which is the total weight of three types of Mazda cars and the
other is the number of common gauge parts. It is among the largest
black-box optimization benchmark problems that are based on a
real application. Because of practical considerations, the thickness
of a structural part can only take values from a finite set of discrete
settings. However, for each variable, the number of settings range
from 4 to 18, and the total number of possible combinations of
settings of the discrete variables is 4.4427 × 10198, which is beyond
astronomical. The multi-objective problem is to determine trade-off
feasible solutions that minimize the total weight of the three types
of cars (sport utility vehicle Mazda CX-5 (SUV), large vehicle Mazda
6 (LV), and small vehicle Mazda 3 (SV)) and maximize the number of
common gauge parts. Design optimization of car structures involve
simulations that are computationally very expensive. However, the
code for the Mazda benchmark evaluates relatively quickly because
the collision safety constraints are modeled by response surface
approximations [13]. For more details of the problem, check out
the webpage https://ladse.eng.isas.jaxa.jp/benchmark/index.html.
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3.2 Experimental Setup
Two-Phase POSEIDON is implemented using RBF surrogates and
two variants are considered: POSEIDON (RBF-local), which is more
focused on local search, and POSEIDON (RBF-global), which per-
forms more global search. For Phase II of both variants, the OSD
strategy to select the nondominated point that is perturbed to
generate the trial points is applied to an entire cycle of iterations
followed by the RND strategy for the next cycle of iterations, then
the OSD strategy again for the third cycle, and then the EOV
strategy for the fourth cycle, and then this entire sequence of cy-
cles repeats until the computational budget is exhausted. More-
over, in each of the two phases, both variants generate the trial
points from the chosen nondominated point by performing cy-
cles of iterations where the perturbation probability ppert and the
neighborhood depth parameter depthnbhd vary within the cycle.
The POSEIDON (RBF-local) variant uses a cycle of four iterations
where the control parameters (ppert, depthnbhd) take on the values
⟨(0.5, 30%), (0.1, 10%), (0.05, 10%), (0.01, 10%)⟩ as in [23]. The POSEI-
DON (RBF-global) variant uses a cycle of five iterations where the
control parameters (ppert, depthnbhd) take on the values ⟨(0.5, 50%),
(0.3, 50%), (0.2, 10%), (0.1, 10%), (0.05, 10%)⟩ again as in [23].

For a given perturbation probabilityppert, the number of variables
perturbed follows a binomial distribution and the mean number of
variables perturbed is d ·ppert. For the Mazda benchmark, when PO-
SEIDON uses ppert = 0.01, the mean number of variables perturbed
is 222(0.01) = 2.22, and when combined with a depth parameter
of 10%, the generation of trial points is highly local and close to
the chosen nondominated point. On the other hand, when POSEI-
DON uses ppert = 0.5, the mean number of variables perturbed is
222(0.5) = 111, and when combined with a depth parameter of 50%,
the trial points generated facilitate global search.

The two variants of Two-Phase POSEIDON are compared with
NSGA-II with discrete variable encoding and using various crossover
fractions as implemented in the NPGM software [14]. Discrete vari-
able encoding is used for NSGA-II because previous numerical
results from [6] indicate that this encoding yields better results
than continuous variable encoding. In particular, the discrete set-
tings for each variable are converted to the integers 0, 1, 2, up to the
maximum number of possible discrete settings minus one. More-
over, intermediate crossover is used since this is the only option
supported by NPGM [14]. In addition, NSGA-II is run with a popu-
lation size of 300 as in [13] and with the various crossover fractions
set at 1.0, 0.75, 0.5 and 0.25. Ideally, POSEIDON should be compared
with a surrogate-assisted constrained NSGA-II, but a code is not
publicly available.

Two sets of experiments are performed. In the first set of ex-
periments, the initial simulation points used by the POSEIDON
algorithms do not include any feasible points. In the second set
of experiments, the initial simulation points include the feasible
design that is provided with the benchmark. In each set of exper-
iments, each POSEIDON algorithm is run for 5 trials each with a
computational budget of 15d = 3330 simulations while each NSGA-
II algorithm is run for 10 trials each with a computational budget of
3600 simulations (12 generations). To ensure a fair comparison, the
initial set of points used for POSEIDON is the same as the initial
population of 300 points used by NSGA-II. Moreover, for the first

set of experiments, the first trial used the same initial population as
the one used in [6], while for the other trials, an initial population
was obtained by choosing points uniformly at random from the
unimaginably vast search space. For the second set of experiments,
the different trials used the same initial populations as in the first
set of experiments except that the initial feasible design provided
with the benchmark was included as the first individual and the
last individual was removed to keep the number of initial points to
the population size of 300.

All numerical experiments are performed in Matlab 9.4 on an
Intel(R) Core(TM) i7-7700T CPU @ 2.90GHz, 2904 Mhz, 4 Core(s), 8
Logical Processor(s) machine. The Mazda benchmark was released
as a C++ source code, so a Matlab interface was created to run the
executable in the Matlab environment.

3.3 Comparison of Performance When None of
the Initial Points is Feasible

In the first set of experiments, the local and global variants of Two-
Phase POSEIDON that uses RBF surrogates are compared with
NSGA-II algorithms when the initial population does not include
any feasible points. First, the algorithms are compared in how
quickly they are able to obtain a feasible sample point. Table 1
shows the number of simulations (including those for the initial
population) it took the different algorithms to obtain a feasible
sample point and the corresponding feasible objective vector for 5
trials. The last column of the table shows the mean of number of
simulations needed to achieve feasibility for the algorithm.

The results in Table 1 clearly show that the POSEIDON-RBF
algorithms are able to achieve feasibility much more quickly than
any of the NSGA-II algorithms. In fact, removing the initial popu-
lation size of 300 from the mean values in the table, it only takes
an average of 29.2 and 16.4 simulations for POSEIDON (RBF-local)
and POSEIDON (RBF-global), respectively, to find a feasible point.
In contrast, the best performing NSGA-II algorithm (the one with
crossover = 100%) requires an average of 2273 simulations to obtain
a feasible point, which is about 78 times more than the average
number of simulations needed by POSEIDON (RBF-local) and about
139 times more than the average number of simulations needed by
POSEIDON (RBF-global). In terms of the quality of the first feasible
objective vector obtained, the NSGA-II algorithms obtained better
results but this was because of the large number of simulations that
have been expended. As will be seen below, the POSEIDON-RBF
algorithms are able to obtain much better feasible objective vectors
when the computational budget is fixed.

Figure 1 shows the scatter plots of the nondominated objective
vectors obtained by one trial of the POSEIDON-RBF and NSGA-II
algorithms for the given computational budgets and starting with
the same initial population of 300 sample points. Recall that the
goal is to simultaneously minimize f1 (the total weight of three
types of Mazda cars) and maximize f2 (the number of common
gauge parts). The plots show that the POSEIDON-RBF algorithms
obtained much better sets of nondominated objective vectors than
the ones obtained by NSGA-II. In fact, the nondominated objective
vectors obtained by each POSEIDON-RBF algorithm significantly
dominate all the nondominated objective vectors obtained by any of
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Table 1: Number of simulations to feasibility and first feasible sample point obtained for 5 trials of the POSEIDON algorithms
and NSGA-II with various crossover fractions on the Mazda 3-Car Benchmark Problem. The first entry of each feasible point
is the total weight of the 3 types of Mazda cars while the second entry is the number of common gauge parts.

Algorithm Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Mean

POSEIDON (RBF-local) 342 330 315 329 330 329.2
[3.0348,2] [3.0658,3] [3.1258,2] [3.0478,4] [3.0528,5]

POSEIDON (RBF-global) 319 319 313 318 313 316.4
[3.1005,1] [3.0967,2] [3.1230,3] [3.0991,3] [3.1074,3]

NSGA-II (crossover = 100%) 2732 2805 2748 2414 2166 2573.0
[2.9891,19] [2.9949,7] [3.0627,3] [2.9837,6] [2.9872,14]

NSGA-II (crossover = 75%) 2807 2858 2533 2961 2423 2716.4
[3.0064,6] [2.9664,6] [3.0534,6] [3.0332,7] [3.0203,6]

NSGA-II (crossover = 50%) 2965 3007 2724 3055 3436 3037.4
[3.0209,7] [3.0642,7] [3.0392,4] [3.0463,5] [3.0265,7]

NSGA-II (crossover = 25%) 3587 > 3600 > 3600 3466 > 3600 > 3570.6
[2.9904,10] NA NA [3.0397,4] NA
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Figure 1: Nondominated objective vectors obtained by two
POSEIDON algorithms that use RBF surrogates and when
none of the initial points is feasible. The NSGA-II results
shown used a population size of 300, discrete variable en-
coding and crossover fractions from 25% to 100%. The com-
putational budget is 15d = 3330 simulations for POSEIDON
and 3600 simulations (12 generations) for NSGA-II.

the NSGA-II algorithms. Moreover, the local variant of POSEIDON-
RBF obtained a much better set of nondominated points than the
one obtained by the global variant.

Next, Table 2 shows the mean hypervolumes obtained by the
POSEIDON-RBF and NSGA-II algorithms after normalizing the ob-
jective functions and using the reference point [1.1, 0] as suggested
in [6]. The normalized objectives are obtained by: f̃1 = f1 − 2 and
f̃2 = f2/74. The POSEIDON-RBF algorithms are run with a com-
putational budget of 15d = 3330 simulations while the NSGA-II

Table 2: Mean hypervolumes for 5 trials of the POSEIDON
algorithms and 10 trials of the NSGA-II algorithms on the
Mazda 3-Car Benchmark. The number inside the parenthe-
sis is the standard error of themean. The objective functions
(total weight and number of common parts) are normalized
as in [6] and the reference point is [1.1, 0].

Algorithm Mean Hypervolume

POSEIDON (RBF-local) 0.1367 (0.0072)
POSEIDON (RBF-global) 0.1041 (0.0076)
NSGA-II (crossover fraction = 100%) 0.0310 (0.0018)
NSGA-II (crossover fraction = 75%) 0.0235 (0.0010)
NSGA-II (crossover fraction = 50%) 0.0099 (0.0007)
NSGA-II (crossover fraction = 25%) 0.0018 (0.0015)

algorithms are run with a computational budget of 3600 simula-
tions (12 generations). The mean hypervolumes are calculated over
5 trials for the POSEIDON-RBF algorithms and over 10 trials for the
NSGA-II algorithms. Table 2 also reports the standard error of the
mean hypervolumes for each of the algorithms. The table shows
that the hypervolumes obtained by the POSEIDON-RBF algorithms
are much better than the hypervolumes obtained by the NSGA-II
algorithms even as the computational budget for POSEIDON-RBF
(3330 simulations) is less than that for the NSGA-II algorithms (3600
simulations). Moreover, the mean hypervolume obtained by POSEI-
DON (RBF-local) is statistically significantly better than the one
obtained by POSEIDON (RBF-global).

The results on the mean hypervolumes in Table 2 and the plot
in Figure 1 suggest that the local variant of POSEIDON-RBF is
more effective than the global variant. This is consistent with the
numerical results obtained for the original POSEIDON-RBF in [23]
where a feasible initial point is provided. A possible explanation for
this is that the local variant makes more conservative changes to
a current nondominated point, which facilitates the generation of
feasible sample points. In contrast, for the global variant, making
many changes to a current feasible nondominated point makes
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it more likely to violate one of the many black-box constraints,
thereby making it more difficult to generate feasible sample points.

3.4 Comparison of Performance When a
Feasible Initial Point is Given

In the second set of experiments, the local and global variants of
Two-Phase POSEIDON that uses RBF surrogates are compared
with NSGA-II algorithms when the initial population includes the
feasible design provided with the benchmark, which has a fea-
sible objective vector of [f1, f2] = [3.0028, 35]. In this case, the
POSEIDON-RBF algorithms proceed directly to Phase II. Figure 2
shows the scatter plots of the nondominated objective vectors ob-
tained for one trial of the POSEIDON-RBF and NSGA-II algorithms
for the given computational budgets and starting with the same set
of initial sample points of size 300 that includes the given initial fea-
sible point. Note that this plot differs from the one for the original
POSEIDON-RBF algorithms in [23] in that the new POSEIDON-
RBF implementations include the EOV criterion for selecting the
nondominated point to perturb in generating the trial points. Re-
call that the EOV criterion is meant to improve exploration in the
extremes of the approximate Pareto front.
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Figure 2: Nondominated objective vectors obtained by two
POSEIDON algorithms that use RBF surrogates and by
NSGA-II when a feasible initial point is provided. NSGA-II
used a population size of 300, discrete variable encoding and
crossover fractions from 25% to 100%. The computational
budget is 15d = 3330 simulations for POSEIDON and 3600
simulations (12 generations) for NSGA-II.

The plots in Figure 2 again show that the POSEIDON-RBF al-
gorithms obtained much better sets of nondominated objective
vectors than the ones obtained by the NSGA-II algorithms. As
in the other set of experiments, the nondominated objective vec-
tors obtained by each POSEIDON-RBF algorithm dominate all the
nondominated objective vectors obtained by any of the NSGA-II
algorithms with various crossover fractions. As before, the local

Table 3: Mean hypervolumes for 5 trials of the POSEIDON
algorithms and 10 trials of the NSGA-II algorithms on the
Mazda 3-Car Benchmark when a feasible initial point is pro-
vided. The number inside the parenthesis is the standard er-
ror of the mean. The objective functions (total weight and
number of common parts) are normalized as in [6] and the
reference point is [1.1, 0].

Algorithm Mean Hypervolume

POSEIDON (RBF-local) 0.1597 (0.0040)
POSEIDON (RBF-global) 0.1244 (0.0033)
NSGA-II (crossover fraction = 100%) 0.0572 (0.0009)
NSGA-II (crossover fraction = 75%) 0.0520 (0.0009)
NSGA-II (crossover fraction = 50%) 0.0494 (0.0010)
NSGA-II (crossover fraction = 25%) 0.0540 (0.0010)

variant of POSEIDON-RBF obtained a better set of nondominated
objective vectors than the one obtained by the more global variant.

Note also that the POSEIDON-RBF algorithms obtained nondom-
inated objective vectors that substantially improve on the initial
feasible design for the Mazda benchmark. For example, one of the
nondominated objective vectors obtained by POSEIDON (RBF-local)
is [f1, f2] = [2.9223, 42], which is a significant improvement over
the initial feasible objective vector of [f1, f2] = [3.0028, 35] given
the limited computational budget of only 15d simulations. On the
other hand, none of the NSGA-II algorithms yielded such an im-
provement over the initial feasible design even with a somewhat
larger computational budget.

Table 3 shows the average hypervolumes obtained by the various
algorithms when a feasible initial point is provided. As before,
the hypervolumes are calculated after normalizing the objective
functions and using the reference point [1.1, 0] as suggested in [6].
The objectives are normalized in the same way as before. Note
that the average hypervolumes in this table are better than the
ones in Table 2, and this is expected since we are using a feasible
initial point in each trial for this set of experiments. The results
are similar to the ones obtained when there are no feasible points
in the initial populations. In particular, Table 3 shows that the
average hypervolumes obtained by the POSEIDON-RBF algorithms
are much better than the hypervolumes obtained by the NSGA-II
algorithms even as the computational budget for POSEIDON (3330
simulations) is less than that for NSGA-II (3600 simulations).

3.5 Comparison with Earlier Results on the
Mazda Benchmark

We now compare the results obtained in this paper with the earlier
results reported for the 3-car Mazda benchmark problem from [17]
and [13]. Assuming that those papers used the same initial popula-
tion of 300 points that was provided with the Mazda benchmark
problem, we can visually compare the quality of the nondominated
objective vectors and the hypervolumes obtained by the Two-Phase
POSEIDON-RBF algorithms with those from [17] and [13]. Compar-
ing Figure 1 in this paper with Figure 2 in [17], note that many of the
nondominated objective vectors obtained by POSEIDON-RBF dom-
inate those obtained by ELM-assisted CMOEA/D in [17]. Moreover,
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the hypervolume obtained after 300 generations for ELM-assisted
CMOEA/D in Figure 1 of [17] was less than 0.08 while the average
hypervolumes obtained by POSEIDON (RBF-local) and POSEIDON
(RBF-global) were 0.1367 and 0.1041 while using a computational
budget of only 15d = 3330 simulations (about 11 generations for a
population size of 300).

Next, comparing Figure 1 in this paper with Figure 2 in [13], we
also see that the nondominated objective vectors obtained by the
POSEIDON-RBF algorithms using only 15d = 3330 simulations are
not dominated by those obtained in [13] with 30,000 simulations.
Moreover, if we include the feasible design provided in [6] among
the initial population, some of the nondominated objective vectors
obtained by the POSEIDON-RBF algorithms in Figure 2 of this
paper are also not dominated by those obtained in [13], again while
expending much less simulations.

Finally, we compare Two-Phase POSEIDON with the original
POSEIDON from [23] given the feasible design provided in [6]
among the initial population. The main difference between Phase
II of Two-Phase POSEIDON and the original POSEIDON is that the
former uses the additional EOV strategy that is meant to promote
exploration of the extremes of the approximate Pareto front. Since
only one trial was performed in the original POSEIDON algorithms,
we compare it with the first trial of the Two-Phase POSEIDON
algorithms. The initial population is the same for both algorithms,
so the results are directly comparable. The hypervolumes obtained
for the first trial of Two-Phase POSEIDON (RBF-local) and the
original POSEIDON (RBF-local) on the 3-car Mazda benchmark
using 15d = 3330 simulations are 0.1555 and 0.1524, respectively.
Moreover, the hypervolumes obtained for the first trial of Two-
Phase POSEIDON (RBF-global) and the original POSEIDON (RBF-
global) are 0.1295 and 0.1182, respectively. In both cases, the EOV
strategy resulted in an improvement in hypervolumes obtained
(2.03% improvement for the local variant and 9.56% improvement
for the global variant).

4 SUMMARY AND FUTUREWORK
This paper proposed the surrogate-based Two-Phase POSEIDON
algorithm, which is an extension of the POSEIDON algorithm
from [23] for high-dimensional and computationally expensive
constrained discrete multi-objective optimization problems with
ordinal decision variables and many black-box constraints. The
original POSEIDON algorithm assumes that a feasible initial point
is available while Two-Phase POSEIDON can be used even when a
feasible point is not provided. In Phase I, the algorithm finds a feasi-
ble point by using the surrogates of the constraints and objectives.
In Phase II, the algorithm finds a set of nondominated objective vec-
tors that improve on the feasible point found in Phase I. Moreover,
this paper incorporates the EOV strategy as an additional strategy
for selecting a nondominated point to perturb when generating trial
solutions from which the simulation point is chosen. This strategy
is meant to improve the ability of the algorithm to explore and
expand the extremes of the approximate Pareto front.

Local and global variants of Two-Phase POSEIDON that utilize
RBF surrogates are tested on the 3-car Mazda benchmark problem
involving 222 discrete decision variables, 54 black-box inequality
constraints, and 2 objective functions. Two sets of experiments

are performed comparing POSEIDON with an NSGA-II implemen-
tation. For the first set of experiments, none of the initial points
are feasible. For the second set of experiments, the feasible point
provided with the Mazda benchmark is included among the initial
points. The results for both sets of experiments show that when
the computational budget is only about 15d = 3330 simulations,
the POSEIDON algorithms yielded much better nondominated ob-
jective vectors than NSGA-II that uses discrete variable encoding.
Moreover, both sets of experiments indicate that the local variant
of POSEIDON performs better than the global variant. In addition,
the local variant of POSEIDON yielded a significant improvement
over the given initial feasible design for both objectives while none
of the NSGA-II algorithms yielded such an improvement with the
given computational budget. Finally, the Two-Phase POSEIDON
algorithms found many nondominated objective vectors that either
dominate or are at least not dominated by the nondominated objec-
tive vectors from earlier results using other algorithms on the 3-car
Mazda benchmark reported in [17] and [13] while consuming much
less simulations. These results suggest that Two-Phase POSEIDON
is a promising approach for high-dimensional and computationally
expensive constrained discrete multi-objective optimization.

The current implementation of Two-Phase POSEIDON assumes
that all of the objective and constraint functions are computation-
ally expensive. However, there are applications where only some
of the objectives and constraints are black-box and expensive. It is
possible to develop extensions to Two-Phase POSEIDON that take
advantage of explicitly defined objectives and constraints. More-
over, other strategies for generating simulation points may be ex-
plored including by solving a multi-objective subproblem where the
original objective and constraint functions are replaced by their sur-
rogates. It would also be of interest to explore how well Two-Phase
POSEIDON performs when the feasible region is highly discon-
nected. By setting the perturbation probability and neighborhood
depth parameter to large values, Two-Phase POSEIDON is able
to perform a more global search that has the ability to traverse
infeasible regions of the search space, but it may be possible to
improve its performance on problems with disconnected feasible
regions by considering multiple neighborhoods in different regions
that can be explored simultaneously through parallel processing.
Finally, as mentioned earlier, the collision safety constraints in the
Mazda benchmark are modeled by response surface approximations
[13], so the resulting constraint functions are smooth. It would be
interesting to see how Two-Phase POSEIDON will perform when
using the constraint function values obtained directly from the
simulations. It would also be worth exploring how the RBF model
interacts with these response surface approximations and whether
the performance of Two-Phase POSEIDON is sensitive to the choice
of the surrogate model.

ACKNOWLEDGEMENTS
Thanks to Dr. Takehisa Kohira of the Mazda Corporation for clari-
fying the details of the Mazda benchmark. Thanks also to Dr. Song
Lin for the Matlab NPGM code that implements NSGA-II with con-
straint handling and to Dr. Yi Cao for his Matlab codes that extract
the set of nondominated solutions. I am grateful to Dr. Yohanes
Bimo Dwianto for bringing the Mazda benchmark to my attention.

1877



A Two-Phase Surrogate Approach for High-Dimensional Constrained Discrete Multi-Objective Optimization GECCO ’21 Companion, July 10–14, 2021, Lille, France

REFERENCES
[1] Taimoor Akhtar and Christine A. Shoemaker. 2016. Multi objective optimization

of computationally expensive multi-modal functions with RBF surrogates and
multi-rule selection. Journal of Global Optimization 64 (2016), 17–32.

[2] Samineh Bagheri, Wolfgang Konen, Michael Emmerich, and Thomas Bäck. 2017.
Self-adjusting parameter control for surrogate-assisted constrained optimization
under limited budgets. Applied Soft Computing 61 (2017), 377–393.

[3] T. Bartz-Beielstein and M. Zaefferer. 2017. Model-based methods for continuous
and discrete global optimization. Applied Soft Computing 55 (2017), 154–167.

[4] A. E. I. Brownlee and J. A. Wright. 2015. Constrained, mixed-integer and multi-
objective optimisation of building designs by NSGA-II with fitness approximation.
Applied Soft Computing 33 (2015), 114–126.

[5] T. Chugh, Y. Jin, K. Miettinen, J. Hakanen, and K. Sindhya. 2018. A surrogate-
assisted reference vector guided evolutionary algorithm for computationally
expensive many-objective optimization. IEEE Transactions on Evolutionary Com-
putation 22, 1 (2018), 129–142.

[6] The Mazda Motor Corporation. 2018. Mazda Benchmark Problem. https://ladse.
eng.isas.jaxa.jp/benchmark/index.html. Accessed: 2020-04-30.

[7] A. Dushatskiy, A. M. Mendrik, T. Alderliesten, and P. A. N. Bosman. 2019. Convo-
lutional neural network surrogate-assisted GOMEA. In GECCO ’19: Proceedings
of the Genetic and Evolutionary Computation Conference. 753–761.

[8] Paul Féliot, Julien Bect, and Emmanuel Vazquez. 2017. A Bayesian approach to
constrained single- and multi-objective optimization. Journal of Global Optimiza-
tion 67 (2017), 97–133.

[9] A. I. J. Forrester, A. Sobester, and A. J. Keane. 2008. Engineering Design via
Surrogate Modelling: A practical guide. John Wiley & Sons.

[10] H. Fukumoto and A. Oyama. 2018. Benchmarking multiobjective evolutionary
algorithms andconstraint handling techniques on a real-world car structure
design optimization benchmark problem. In GECCO ’18: Proceedings of the Genetic
and Evolutionary Computation Conference Companion. 177âĂŞ–178.

[11] A. Habib, H. K. Singh, T. Chugh, T. Ray, and K. Miettinen. 2019. A multiple
surrogate assisted decomposition based evolutionary algorithm for expensive
multi/many-objective optimization. IEEE Transactions on Evolutionary Computa-
tion 23, 6 (2019), 1000–1014.

[12] J. Knowles. 2006. ParEGO: A hybrid algorithm with on-line landscape approxi-
mation for expensive multiobjective optimization problems. IEEE Transactions
on Evolutionary Computation 10, 1 (2006), 50–66.

[13] T. Kohira, H. Kemmotsu, A. Oyama, and T. Tatsukawa. 2018. Proposal of bench-
mark problem based on real-world car structure design optimization. In GECCO
’18: Proceedings of the Genetic and Evolutionary Computation Conference Compan-
ion. 183–184.

[14] Song Lin. 2011. NPGM – A NSGA Program in Matlab, Version 1.4. http://www.
mathworks.com/matlabcentral/fileexchange/31166.

[15] M. Mlakar, D. Petelin, T. Tušar, and B. Filipič. 2015. GP-DEMO: differential
evolution for multiobjective optimization based on gaussian process models.
European Journal of Operational Research 243, 2 (2015), 347–361.

[16] Juliane Müller. 2017. SOCEMO: Surrogate optimization of computationally ex-
pensive multi-objective problems. INFORMS Journal on Computing 29, 4 (2017),
581–596.

[17] H. Ohtsuka, M. Kaidan, T. Harada, and R. Thawonmas. 2018. Evolutionary
algorithm using surrogate assisted model for simultaneous design optimization
benchmark problem of multiple car structures. In GECCO ’18: Proceedings of the
Genetic and Evolutionary Computation Conference Companion. 55–56.

[18] A. Oyama, T. Kohira, H. Kemmotsu, T. Tatsukawa, and T. Watanabe. 2017. Si-
multaneous structure design optimization of multiple car models using the K
computer. In 2017 IEEE Symposium Series on Computational Intelligence (SSCI)
(Honolulu, HI). 1–4.

[19] P. S. Palar, Y. B. Dwianto, L. R. Zuhal, and T. Tsuchiya. 2016. Framework for Robust
Optimization Combining Surrogate Model, Memetic Algorithm, and Uncertainty
Quantification. In Advances in Swarm Intelligence. Springer International Pub-
lishing, Cham, Switzerland, 48–55.

[20] M. J. D. Powell. 1992. The theory of radial basis function approximation in 1990.
In Advances in Numerical Analysis, Volume 2: Wavelets, Subdivision Algorithms
and Radial Basis Functions, W. Light (Ed.). Oxford University Press, Oxford, U.K.,
105–210.

[21] Rommel G. Regis. 2014. Constrained optimization by radial basis function in-
terpolation for high-dimensional expensive black-box problems with infeasible
initial points. Engineering Optimization 46, 2 (2014), 218–243.

[22] Rommel G. Regis. 2016. Multi-objective constrained black-box optimization
using radial basis function surrogates. Journal of Computational Science 16 (2016),
140–âĂŞ155.

[23] Rommel G. Regis. 2020. High-Dimensional Constrained Discrete Multi-objective
Optimization Using Surrogates. In Machine Learning, Optimization, and Data
Science. LOD 2020. Lecture Notes in Computer Science, G. Nicosia et al. (Ed.).
Vol. 12566. Springer Nature Switzerland AG, Cham, Switzerland, 203–214.

[24] Prashant Singh, Ivo Couckuyt, Francesco Ferranti, and Tom Dhaene. 2014. A
constrained multi-objective surrogate-based optimization algorithm. In 2014 IEEE

Congress on Evolutionary Computation (CEC). IEEE, 3080–3087.
[25] K. Yang, L. Li, A. Deutz, T. Back, and M. Emmerich. 2016. Preference-based

multiobjective optimization using truncated expected hypervolume improvement.
In 2016 12th International Conference on Natural Computation, Fuzzy Systems and
Knowledge Discovery (ICNC-FSKD) (Changsha, China). 276–281.

1878

https://ladse.eng.isas.jaxa.jp/benchmark/index.html
https://ladse.eng.isas.jaxa.jp/benchmark/index.html
http://www.mathworks.com/matlabcentral/fileexchange/31166
http://www.mathworks.com/matlabcentral/fileexchange/31166

	Abstract
	1 Introduction
	2 The Two-Phase POSEIDON Algorithm
	2.1 Algorithm Description
	2.2 Radial Basis Function Interpolation

	3 Numerical Experiments
	3.1 Description of the Mazda Benchmark
	3.2 Experimental Setup
	3.3 Comparison of Performance When None of the Initial Points is Feasible
	3.4 Comparison of Performance When a Feasible Initial Point is Given
	3.5 Comparison with Earlier Results on the Mazda Benchmark

	4 Summary and Future Work
	References

