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ABSTRACT
Many mathematical optimization algorithms fail to sufficiently ex-
plore the solution space of high-dimensional nonlinear optimization
problems due to the curse of dimensionality. This paper proposes
generative models as a complement to optimization algorithms to
improve performance in problems with high dimensionality. To
demonstrate this method, a conditional generative adversarial net-
work (C-GAN) is used to augment the solutions produced by a
genetic algorithm (GA) for a 311-dimensional nonconvex multi-
objective mixed-integer nonlinear optimization. The C-GAN, com-
posed of two networks with three fully connected hidden layers, is
trained on solutions generated by GA, and then given sets of desired
labels (i.e., objective function values), generates complementary
solutions corresponding to those labels. Six experiments are con-
ducted to evaluate the capabilities of the proposed method. The gen-
erated complementary solutions are compared to the original solu-
tions in terms of optimality and diversity. The generative model gen-
erates solutions with objective functions up to 79% better, and with
hypervolumes up to 58% higher, than the original solutions. These
findings show that a C-GAN with even a simple training approach
and architecture can, with a much shorter runtime, highly improve
the diversity and optimality of solutions found by an optimization
algorithm for a high-dimensional nonlinear optimization problem.
[GitHub repository: https://github.com/PouyaREZ/GAN_GA]
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1 INTRODUCTION
Mathematical optimization faces challenges when solving highly
non-linear and high-dimensional optimization problems [4, 6], since
the solution space for these problems is so vast that the optimiza-
tion algorithm fails to properly explore the optimal solutions of
the entire space in a reasonable amount of time [4, 6]. To solve
this issue, this paper proposes using conditional generative adver-
sarial networks (C-GANs) to learn the underlying distribution of
the solutions generated by the optimization algorithm, and then
generating unseen, more optimized solutions to the original op-
timization problem using the generative model (c.f. [3]). C-GAN
consists of two adversarial models, a generator and a discriminator
[7]. The generator learns the data distribution of the input solutions
to generate new solutions, and the discriminator learns to detect
if a solution belongs to the input data distribution or not. The ad-
versarial training as well as conditioning on the data labels enable
C-GAN to generate unseen solutions for given desired labels [7].
Research to date on applying GANs to optimization has focused on
random generation rather than targeted generation of data points
with desired labels [5, 6, 9].

The proposed method is tested on a nonconvex multi-objective
mixed-integer nonlinear program (MINLP), which is solved using a
genetic algorithm (GA). This optimization problem concerns the
sustainable design of the buildings, energy plant, and energy dis-
tribution network in an urban district [1, 2] by minimizing the
life-cycle cost (LCC) and greenhouse gas emissions (GHG) and
maximizing the walkability (WLK) [8] of the district. A C-GAN
generates complementary solutions for the optimization problem
based on the solutions found by the GA. This paper handles the
problem of training the C-GAN on the solutions of the optimiza-
tion problem as one of multi-variate multiple regression, where
the features (independent variables) of the training set are the 10
main integer inputs of the optimization problem, and the labels (de-
pendent variables) are the 3 real-valued objective functions (OFs).
The contributions of this work include, (i) a new method for aug-
menting traditional optimization for highly complex optimization
problems, (ii) the first application in the literature of C-GANs to
multivariate multiple regression, and (iii) the first direct application
in the literature of C-GANs to mathematical optimization.

2 METHOD
This paper uses a C-GAN (Figure 1) to complement the performance
of a genetic algorithm on a high-dimensional nonlinear optimiza-
tion. The C-GAN trains on the results from the GA, then generates
more diverse and more optimized solutions to the optimization
problem than the GA has identified. Those generated solutions
that satisfy the constraints of the original optimization problem
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Figure 1: Architectures of C-GAN’s generator and discrimi-
nator networks. [BNorm: BatchNorm., LReLU: LeakyReLU]

Figure 2: Overview of the proposed method

(i.e. admissible solutions) are kept as the complementary solutions.
Figure 2 shows the proposed method.

Different subsets of 65,610 solutions to the optimization prob-
lem, from a single run of GA, are used to perform six experiments
to inspect the abilities of the proposed method (Table 1). In these
experiments, the C-GAN is trained on different subsets of the orig-
inal solutions which simulate situations where the optimization
algorithm has produced solutions with desirable or undesirable
objective function (OF) values. The solutions that C-GAN generates
are then compared, in terms of different OF values and hypervol-
ume, with their respective training sets.

In the first three experiments, WorstHalfGHG, WorstHalfLCC,
and WorstHalfWLK, the C-GAN is trained on the worst half of
the initial solutions in terms of each OF. These experiments mea-
sure how well C-GAN can generate solutions with, respectively,
improved GHGs, LCCs, and WLKs compared to a training set com-
posed of adversely selected solutions in terms of each OF. In the
fourth experiment, WorstHalfAll, the same procedure is followed
for a training set composed of solutions with all three OFs in the
worst half of the OF values in the initial solutions. The generated
solutions are then compared in terms of all OFs with the train-
ing set. In the fifth experiment, BestHalfAll, the C-GAN is trained
on solutions with all three OFs in the best half of the OF values
in the initial solutions. This experiment measures if the C-GAN
can generate solutions with better OF values than a training set
of high-quality solutions found by the GA. In the last experiment,
FullData, the C-GAN is trained on the entire 65,610 initial solutions.
This experiment measures the performance of C-GAN in creating
solutions with better OF values than the entire initial solutions.

3 RESULTS AND CONCLUSIONS
Table 1 shows that the generator has created solutions with a mini-
mum GHG of up to 21% lower, and a minimum LCC of up to 79%
lower, than that of the training (input) sets. In the third and fourth

Table 1: Improvements (in %) the C-GAN achieves in the ob-
jective functions and hypervolume in the six experiments

Experiment 𝑀𝑖𝑛𝐺𝐻𝐺 𝑀𝑖𝑛𝐿𝐶𝐶 𝑀𝑎𝑥𝑊𝐿𝐾 Hypervol.
WorstHalfGHG 9.0 0.1
WorstHalfLCC 78.7 0.7
WorstHalfWLK NaN NaN
WorstHalfAll 21.0 74.4 NaN NaN
BestHalfAll 8.4 60.9 57.9 57.9
FullData 0.0 -0.8 0.0 0.1

experiments, the generator has produced solutions with maximum
WLKs of 15.0 (highest possible value ofWLK in the studied problem)
from training sets with maximum WLKs of 0. However, the genera-
tive model has not generated solutions with better OF values than
those of the entire original solutions in the FullData experiment.
This probably indicates that the original optimization algorithm has
discovered solutions with OF values close to their global optima.
Nonetheless, in the third and fourth experiments, generative model
has made solutions with hypervolumes of 1.0 from training sets
with trivial hypervolumes. This shows that compared to the input
dataset, the solutions generated by the C-GAN have higher spread
and convergence to the optimal Pareto front.

The C-GAN has achieved these improvements in less than 3%
of the time needed to run the original optimization method. These
results speak to the promise of using generative models, specifically
C-GANs, for improving the performance of optimization algorithms,
like genetic algorithms, for high-dimensional optimization. This
paper also demonstrates that C-GANs, even with simple architec-
tures and small training iterations on low-quality solutions, can
significantly improve the results of complex optimization problems.
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