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ABSTRACT
Controlling large numbers of heterogeneous agents in dynamic
environments has a number of civilian and defense applications,
but presents challenges in cooperation among agents and decision
making in uncertain environments. This paper investigates a new
problem representation using genetic algorithm tuned potential
fields and a new multi-objective problem formulation that evolves
distributed control for large numbers of cooperating and competing
heterogeneous agents in dynamic environments. Using real-time
strategy game-like simulation as a test-bed, results show that the
proposed approach scales to controlling a number of and differ-
ent types of agents. Our representation uses influence maps to
choose a target and a set of potential fields to control the maneu-
verability of agents in real-time. We formulated this problem as
a multi-objective optimization problem and used an evolutionary
multi objective optimization technique to maximize two conflicting
objectives in simulation skirmishes. Results indicate that our evolu-
tionary algorithm based representation produces good cooperative
behavior and generalized well across groups composed from several
different types of agents.
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1 INTRODUCTION
Distributed control of large numbers of heterogeneous agents has
many real world applications. Four application areas are defense,
search and rescue, self-driving vehicles, and video games. Advance-
ments in distributed control in these domains will lead to better
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control and execution of given tasks. However, making signifi-
cant progress for large numbers of agents requires addressing first,
the challenge of cooperation among large numbers of agents to
complete any given task, and second, decision making in dynamic
environments. Cast as a search problem, because of the combina-
torial explosion in the number of possible control parameters for
different types of agents, a brute force search method to search
for the best parameter set in reasonable time becomes unfeasible.
Furthermore, environmental and regulatory constraints can fur-
ther increase the complexity of problems, for example, strict and
non-revocable traffic guidelines can significantly increase the level
of difficulty for navigation while meeting safety requirements for
autonomous vehicles.

In addition to these two problems, the explainability of models or
algorithms that control agents in real world applications is another
challenge. The need for an explainable model or algorithm arises in
designing trustworthy, better human interactable, more transparent
agents [8]. Agent trustworthiness is a crucial aspect in real world
applications domains such defense and health. Transparency in
decision making mechanisms helps to understand the actions taken
by agents in given circumstances.

In this work, we present an influence map and potential fields
based representation and a new multi objective problem formula-
tion to evolve distributed control for a large number of heteroge-
neous agents in game-like simulation modeled after the well known
StarCraft-II (SC2) Real-Time Strategy (RTS) game. Agents need to
cooperate with each other to win skirmishes. The number of pos-
sible control parameters among large numbers of agents explodes
rapidly, thus we used an EvolutionaryMulti Objective Genetic Algo-
rithm (EMOGA) to find a set of pareto optimal solutions. Specifically,
in this work, we used our own implementation of the well know
Non-dominated Sorting Genetic Algorithm-II (NSGA-II) [5]. Our
new problem representation not only helps agents to make real time
decisions in a dynamic environments but also provides more easily
understood action explanations. This improves the transparency of
our proposed representation and problem formulation.

RTS games are a sub-genre of strategy video games and an ac-
tive area of research [12]. RTS games are war simulation games
and can be used as an effective tool to learn long term and short
term planning or strategy. The decision making in RTS games can
be broadly classified into two categories; macro-management and
micro-management. Macro-management or Macro describes long-
term strategic planning to manage resource gathering, choosing
a location to build new infrastructure, and producing a winning
mix of agent types and numbera of agents. The more infrastruc-
ture built, the more flexibility players have to build new agents for
micro and win combat. Micro-management or Micro is short-term
tactical planning to guide agents movement in order to eliminate
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opponent agents and infrastructure while keeping friendly agents
undamaged and alive. We can further decompose micro in two
sub-categories: tactical and reactive control. Tactical control gov-
erns the positioning and movement of a group of agents, whereas
reactive control guides a specific agent in order to move, attack
or flee. We evolve micro behaviors using EMOGA for different
groups of agents controlled through our proposed representation
against identical groups of agents controlled through SC2’s default
AI controller (SC2-AI).

For experiments, we created two identical teams: Own Team (OT)
and Enemy Team (ET) in SC2, where OT agents are controlled using
our representation and ET agents are controlled though SC2-AI.
We created identical teams to ensure that no side has an advan-
tage. Each team is composed of large numbers of different types of
agents. Different types of agents have different abilities, strengths,
weakness thus good cooperation between agents can produce an
effective tactical strategy to win skirmishes and perhaps even win
the entire game. We discuss our experimental setup and different
scenarios in more detail in Section 3 and we assume that all game
information is available for decision making. Our representation
uses different Potential Fields (PFs) and Influence Maps (IMs) to
guide the movement of large numbers of agents in dynamic envi-
ronment in order to maximize damage done to opponent agents
and minimize damage received by own OT agents.

Earlier work has shown the effectiveness of IMs and PFs [6], [7]
to evolve a variety of micro behaviors that maximize damage done
to opponents and minimize damage received by friendly agents.
This paper explores the same approach with more complex sce-
narios and more different types of agents with different unique
abilities. In order to win, agents with different abilities need to
learn how to exploit the strengths and weakness of other agents.
We conducted experiments by making a variety of combinations of
different types of agents to combat against similar combinations
of agents. The experimental results show that agents controlled
through our approach coordinated well together and ET agents
controlled by the hard coded SC2-AI.

The remainder of this paper is organized as follows: Section 2,
describes prior work in generating micro behaviors using differ-
ent approaches. Section 3, describes the experimental setup, and
training and testing scenarios in detail. Subsequently, Section 4,
describes our representation and fitness evaluation. In Section 5,
we show and discuss experimental results. Lastly, in Section 6, we
draw conclusion and present possible future work.

2 RELATEDWORK
Many researchers have proposed and investigated different ap-
proaches for distributed control of multiple agents. These include
rule based techniques, tree search, reinforcement learning (RL) [16],
and neuro-evolution of augmenting topologies (NEAT) [9]. In rule
based techniques, an agent execute an action form a pre-defined set
of actions for a given input/situation, but is unable to perform well
in other situations for which actions are not pre-defined. In tree
search, an agent searches for a solution in the search space for a
given situation. The size of search space depends on the complexity
of problems, for example, the search space for the game of chess is
on the order of 1050 and for RTS games 1050

5000
[12]. Searching for

a solution over a large search space may violate an agent’s allowed
time constraints. This limits the use of tree search based methods
to problems with low or moderate search spaces. In order to solve
complex problems with large search spaces, researchers paid much
attention to reinforcement learning based approaches, where an
agent interacts with the given environment and learns through the
process of trial and error. However, when using Neural Networks
(deep or shallow) to represent policy, it is difficult to explain the
learned behaviors of agents [8, 15]. Similarly NEAT, as the name
suggests, uses evolutionary algorithms to evolve both the structure
and weights of neural networks. Again, NEAT control strategies
are difficult to explain.

RTS games can be considered simulation games where a player
needs to develop long term and short term strategies and tactics to
win against opponents. Long term strategy involves infrastructure
build order planning, managing resources, and scouting to find out
an opponent’s infrastructure and army composition and to predict
opponent strategy [13]. We are specifically interested in short term
planning or tactics to win skirmishes against opponents. Short
term planning or micro governs the movement of a group of agents
during skirmishes. Many researchers have used influence maps,
potential fields [2], neuro-evolution [17], and reinforcement learn-
ing based algorithms [16] to generate micro behaviors in different
RTS games. Churchill presented an algorithm called Alpha-Beta
Considering Duration (ABCD) to control upto eight agents in RTS
games [4]. Chung applied amonte carlo planning technique to guide
agents in ORTS; a simplified version of the StarCraft-Broodwar [3]
RTS game. Balla used amonte carlo tree search algorithm for tactical
assault planning inWargus; another research RTS game [1]. Gabriel
presented a Bayesian model to generate strategies and control a
group of agents and their positioning [18].

In RTS games, badly controlled agents may lead to losses when
superior in numbers. To deal with this issue Preuss used evolution-
ary algorithms to generate flocking behavior and an influence map
for path finding in the RTS game Glest [14]. Early work in our lab
used influence maps encoding enemy spatial information to evolve
complete RTS game players [11]. In [7] we compared three different
approaches to generate micro behaviors. These three approaches
are NEAT, a meta-search (hand-coded), and potential field based
approach to generate micro. The next section introduces our new
RTS game environment in more detail.

3 PROBLEM FORMULATION AND
SIMULATION

We aim to evolve micro/short term tactics to win skirmishes against
an intelligent opponent. The problem is formulated as a multi objec-
tive optimization problem to maximize damage done to opponents
and minimize damage received by friendly agents. For experiments,
two identical teams were generated on the game map. Each agent
has a starting location, health, and is classified as ground or aerial
and as ranged or melee type. An agent with a large firing range
is termed as ranged agent and an agent with smaller firing range
is termed as melee agent. Assume that both teams have 𝑁 agents
of different types where the 𝑘𝑡ℎ agent is represented by the tuple
{𝑃𝑘 , 𝐻𝑘 , 𝐴𝑡𝑡𝑎𝑐𝑘𝑘 , 𝑅/𝑀, 𝐹/𝐸}. Here 𝑃𝑘 represents 2D position and
𝐻𝑘 represents health. 𝐴𝑡𝑡𝑎𝑐𝑘𝑘 represents whether the 𝑘𝑡ℎ agent is
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Figure 1: Training scenarios showing positioning of agent teams.

a ground or aerial agent, 𝑅/𝑀 represents the type of agent, ranged
(R) or melee (M). Finally, 𝐹/𝐸 represents whether the 𝑘𝑡ℎ agent is
friendly or enemy agent. Table 1 shows agent’s attributes.

3.1 Problem
We aim to evolve micro behaviors or short term tactics using our
proposed evolutionary distributed control approach to eliminate
enemy agents by inflicting more damage while keeping friendly
agents unharmed and alive by avoiding damage received. In order
to inflict heavy damage to a team of opponent agents, friendly
agents may need to be aggressive which may also lead to lower
health. In contrast, when friendly agents concentrate on avoiding
damage received, they tend to flee and inflict less damage to oppo-
nents. Thus balanced tactics that fight well need to tradeoff damage
done with damage received. We aim to evolve tactics that maxi-
mize damage done to opponents and minimize damage received
by friendly agents. Thus, we formulated this problem as a multi

Table 1: Attributes and characteristics of Agents. Agent
types and attributes are taken from Starcraft-II.

Agent Health Range Attack Type
𝑀𝑎𝑟𝑖𝑛𝑒 (𝑀𝑟 ) 45 5 Air/Ground R

𝑀𝑎𝑟𝑎𝑢𝑑𝑒𝑟 (𝑀𝑑 ) 125 6 Ground R
𝑀𝑒𝑑𝑖𝑣𝑎𝑐 (𝑀𝑒 ) 150 11 Healer R
𝐵𝑎𝑛𝑠ℎ𝑒𝑒 (𝐵𝑛) 140 6 Ground R
𝑍𝑒𝑎𝑙𝑜𝑡 (𝑍𝑒 ) 100 0.1 Ground M
𝑆𝑡𝑎𝑙𝑘𝑒𝑟 (𝑆𝑡 ) 80 6 Air/Ground R
𝐴𝑑𝑒𝑝𝑡 (𝐴𝑑 ) 70 4 Ground R
𝑉𝑜𝑖𝑑𝑅𝑎𝑦 (𝑉𝑟 ) 150 6 Air/Ground R
𝑆𝑒𝑛𝑡𝑟𝑦 (𝑆𝑡 ) 40 5 Air/Ground R

𝑍𝑒𝑟𝑔𝑙𝑖𝑛𝑔(𝑍𝑟 ) 35 0.1 Ground M
𝐵𝑎𝑛𝑒𝑙𝑖𝑛𝑔(𝐵𝑙 ) 30 0.25 Ground M
𝑀𝑢𝑡𝑎𝑙𝑖𝑠𝑘 (𝑀𝑢 ) 120 3 Air/Ground R
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objective optimization problem. The two objectives are computed
using equation 1 and 2.

Maximize𝑓 =


1 −

𝑁∑
𝑘=1

𝐻𝑒𝑘

𝑀𝑎𝑥𝐻𝑒𝑎𝑙𝑡ℎ
,

𝑁∑
𝑘=1

𝐻𝑓 𝑘

𝑀𝑎𝑥𝐻𝑒𝑎𝑙𝑡ℎ


(1)

MaxHealth =

𝑁∑
𝑘=0

𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝐻𝑒𝑎𝑙𝑡ℎ𝑘 (2)

The first term of equation 1 computes the damage done to op-
ponent’s agent. Here 𝐻𝑒𝑘 represents remaining health of 𝑘𝑡ℎ en-
emy agent. We normalized remaining health with respect to initial
health. Thus the first term represents the percentage damage done
to opponents. Similarly, the second term computes the percentage
remaining energy of friendly agents at the end of skirmishes. We
aim to maximize both objectives using a well known multi objec-
tive optimization technique, NSGA-II. Earlier research [6],[10] has
shown that solutions evolved on a specific scenario may be work
well on other unseen scenarios. In other words, the evolved solu-
tions may not be robust. To mitigate this issue we train agents over
four different training scenarios and test the quality and robustness
of evolved micro over two previously unseen test scenarios.

3.2 Scenarios
In skirmishes, human players use different micro-behaviors and
strategies depending on opponent’s types, numbers, and position-
ing of game agents. For example, a ranged agent can do effective
kiting (hit and run) against a melee agent. For a group composed
of ranged and melee agents, good tactics may become more com-
plex. One preferred strategy can be a combination of focus attack
and kiting. Thus in order to evolve complex micro behaviors, we
created identical teams composed from different types of game
agents to train on four different scenarios, here different scenarios
refers to different starting position of agents on the game map. Fig-
ure 1 shows the initial positioning of agents in these four different
scenarios in SC2.

We are interested in the evolution of a good quality robust tactics,
thus we use four different training scenarios. However, to measure
the generalizability of evolved tactics, we test the evolved micro
over two unseen scenarios shown in Figure 6 that are significantly
different in initial agent positioning from our testing scenarios.

4 METHODOLOGY
In this work, our objective is to generate a set of micro behaviors
for large numbers of heterogeneous agents. This section explains
our representation to generate micro behaviors, first we explain
influence maps and then potential fields.

4.1 Influence Maps
Spatial information in RTS games plays a significant role in decision
making. Influence Maps (IMs) are commonly used to represent
spatial information such as enemy’s position and terrain spatial
information in games. An IM is a grid composed of many cell with
each cell value computed based on enemies locations and health. To
calculate a grid-cell value, we add the influence of all agents within

Figure 2: Influence map cell values, yellow colored cell is
agent position

a range (𝑟 ) from the cell. The influence of each agent decreases
linearly by a fraction (𝛿) to zero as range increases. If a cell is
influenced by more than one agent, the cell’s value is the sum of all
influences. Equation 3 specifies the equation that determines each
agent’s influence at the grid cell occupied by the agent.

𝐼𝑀𝑠 = 𝑤1𝑃ℎ +𝑤2 (3)

𝐼𝑑 = 𝐼𝑀𝑠 ∗ 𝛿 (4)

𝐺𝑐 =
∑
𝑖∈𝑟

(𝐼𝑀𝑠 − 𝑑𝑖 𝐼𝑑 ) (5)

Here 𝐼𝑀𝑠 is an agent’s influence, 𝑃ℎ is the health of the agent, and
𝑑𝑖 is the distance from the agent. As explained earlier, the influence
of an agent decreases by a fraction as range increases. Equation 4
computes this decrease. 𝛿 is the fraction to reduce influence for
every agent of range upto a range of 𝑟 . Equation 5 then gives the
value for an influence map grid cell. Here 𝑤1, 𝑤2, 𝛿 , and 𝑟 are
tunable influence map parameters. A lower cell value represents
weak enemy influence and high cell values represents strong enemy
influence. We choose the lowest cell value as the target attack
location towards which to move. When multiple cells have the
same lowest value, the closest minimal value cell from our agents
is chosen as the target. Figure 2 shows an example IM generated
by the above equations for 8 agents (Zealots) with IM parameter
values of 𝑤1 = 1, 𝑤2 = 0, 𝛿 = 0.5, 𝑟 = 2 and 𝑃ℎ = 80. Substituting
these values in equation 3, we get the starting IM value of 80 at
the starting position of agents as shown in yellow colored cells in
figure 2. As mentioned earlier, the influence of an agent decrease as
the distance (𝑑𝑖 ) between the agent’s starting location and a grid-cell
increase. In figure 2, the influence decreases by 50% per unit length
of distance and thus cells around the agent’s starting location has
50% less value of the starting influence as shown by brown colored
cells, and when distance is 2 the influence reduced to zero as shown
by blue colored cells. There are several cells where more than one
agent has influence and when computing the influence value of
these cells, we add the influence of each agent. In figure 2, the red
colored cells represent those cells that combine influence of two
agents. There are many cells with the value of 40 and a friendly
agent choose a cell, closest to it, as the target location to attack.
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In this work, we consider agents with different abilities and thus
each different type of agent maneuvers and is best used differently.
An agent with large firing range can attack from a larger distance
and run away to avoid damage received. This is known as kiting. But,
an agent with a smaller firing range needs to go close to opponent
agents to inflict damage. Thus, for each different types of agents,
we tune different set of influence map parameters {𝑤1,𝑤2, 𝛿, 𝑟 }.
With different sets of parameters, agents with different abilities can
choose different target locations to attack. Hence for𝑚 different
types of agents on a team, we tune 4𝑚 influence map parameters.

4.2 Potential Fields
We aim to control the movement of friendly game agents to elimi-
nate opponent agents and win skirmishes. To guide agents in real
time, we use a set of potential fields based on distance, health, and
the target location as shown in equation 6. Here ®𝑃𝐹 is the resul-
tant potential field, ®𝑃𝐹𝑑 , ®𝑃𝐹ℎ are potential fields generated using
distance and health, and ®𝑃𝐹𝑡 is distance dependent potential field
generated by the target.

®𝑃𝐹 = ®𝑃𝐹𝑑 + ®𝑃𝐹ℎ + ®𝑃𝐹𝑡 (6)

®𝑃𝐹𝑑 = ®𝑃𝐹𝑎𝑑 𝑓 + ®𝑃𝐹𝑟𝑑 𝑓 + ®𝑃𝐹𝑎𝑑𝑒 + ®𝑃𝐹𝑟𝑑𝑒 (7)

®𝑃𝐹ℎ = ®𝑃𝐹𝑎ℎ𝑓 + ®𝑃𝐹𝑟ℎ𝑓 + ®𝑃𝐹𝑎ℎ𝑒 + ®𝑃𝐹𝑟ℎ𝑒 (8)

In equation 7, ®𝑃𝐹𝑎𝑑𝑓 , ®𝑃𝐹𝑟𝑑 𝑓 are attractive and repulsive poten-
tial fields based on distance from friendly agents, ®𝑃𝐹𝑎𝑑𝑒 , ®𝑃𝐹𝑟𝑑𝑒 are
attractive and repulsive potential fields based on distance from
enemy agents. Similarly, ®𝑃𝐹𝑎ℎ𝑓 , ®𝑃𝐹𝑟ℎ𝑓 are attractive and repulsive
potential fields based on health of friendly agents, ®𝑃𝐹𝑎ℎ𝑒 , ®𝑃𝐹𝑟ℎ𝑒 are
attractive and repulsive potential fields based on health of enemy
agents. The resultant potential field, 𝑃𝐹 , controls the agent’s desired
heading. Each potential field has two tunable parameters [10], a
coefficient (𝑐) and an exponent (𝑒) Parameter ranges are as follows:
𝑐 ∈ {−10000, 10000} and 𝑒 ∈ {−7, 8}. The influence map parame-
ters 𝑤2 and 𝑟 ∈ {0, 8}, and 𝑤1 and 𝛿 ∈ {0, 1}. Equation 9 gives a
generalized expression for the number of parameters required for
𝑚 different types of agents on each side, where 𝑃𝑛𝑢𝑚 represents the
number of parameters. 𝑞 represents IM and target location param-
eters {𝑤1,𝑤2, 𝛿, 𝑟, 𝑐𝑡 , 𝑒𝑡 } where 𝑐𝑡 and 𝑒𝑡 are target potential field
coefficient and exponents respectively. The second part of Equa-
tion 9, deals with symmetry reduction. The number of parameters
using equation 9 grows as a second order polynomial.

𝑃𝑛𝑢𝑚 = 2 + (𝑞 + 8 × 2 ×𝑚)𝑚 −
∑
𝑖∈𝑚

4(𝑖 − 1) (9)

4.3 Fitness Evaluation
Our objectives are maximizing damage done to the opponent and
minimizing the damage received by friendly agents for a group
composed of heterogeneous agents. We use an evolutionary multi-
objective optimization approach to evolve a diverse pareto front.
We normalize damage done and damage received to span the range
[0..1] as shown in equation 1. Algorithm 1 computes averaged
fitness over MaxScenarios (MS) for each Candidate Solution (CS).

For each scenario, we ran our game-like simulation for a fixed
number of time steps (𝑡𝑖𝑚𝑒𝑆𝑡𝑒𝑝𝑠) and computed objective values
at the end of simulation. For each time step, we compute a target
location for each friendly agent and compute the desired heading
based on potential fields. Each agent moves in the direction of
desired heading with a fixed speed. Algorithm 1 finally returns an
averaged objective value over a given number of scenarios.

Algorithm 1: Fitness Computation
Input :CS
Output :fitness

1 𝑜𝑏 𝑗1 = 𝑜𝑏 𝑗2 = 0;
2 for scenario in MS do
3 timeSteps = 0;
4 while timeSteps<MT do
5 𝐼𝑛𝑓 𝑙𝑢𝑒𝑛𝑐𝑒𝑀𝑎𝑝 ();
6 𝐻𝑒𝑎𝑑𝑖𝑛𝑔𝑠 = 𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙𝐹𝑖𝑒𝑙𝑑𝑠 (𝐶𝑆);
7 𝑀𝑜𝑣𝑒𝐴𝑙𝑙 (𝐻𝑒𝑎𝑑𝑖𝑛𝑔𝑠);
8 timeSteps++;
9 end

10 𝑜𝑏 𝑗1 += 𝐷𝑎𝑚𝑎𝑔𝑒𝐷𝑜𝑛𝑒 ();
11 𝑜𝑏 𝑗2 += 𝐷𝑎𝑚𝑎𝑔𝑒𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑑 ();
12 end
13 𝑜𝑏 𝑗1 = 𝑜𝑏 𝑗1 / MS;
14 𝑜𝑏 𝑗2 = 𝑜𝑏 𝑗2 / MS;
15 fitness = [𝑜𝑏 𝑗1, 𝑜𝑏 𝑗2];
16 return(fitness);

5 RESULTS AND DISCUSSION
We created identical teams to eliminate the issue of bias and evolved
pareto fronts of micro behaviors on four different training scenarios.
These pareto fronts include a diversity of candidate solutions where
each candidate solution has objective values in terms of damage
done and 1 - damage received averaged over four training scenarios.
The NSGA-II ran for 50 generations with a population size of 50, a
probability of crossover of 0.95, and a probability of mutation of
0.05. The experiments were conducted considering different agent
combinations as shown in Table 2 and the attributes of each of
the agents is shown in Table 1. We next discuss the evolved micro
behaviors/tactics for each of our three team configurations.

5.1 Three Different Types of Agents
When considering three different types of agents, we created teams
composed of 20 agents composed of these three types. Specifically,
we used 10 𝑍𝑟 , 6 𝐵𝑙 , and 4𝑀𝑢 for both sides of the skirmish in our

Table 2: Different Agent Combinations

𝑋𝑣𝑠𝑋 Combinations
𝑃𝑣𝑠𝑃 10 𝑍𝑒 , 6 𝑆𝑡 , 4 𝑆𝑒 , 3 𝑉𝑡 , 4 𝐴𝑑

𝑇𝑣𝑠𝑇 10𝑀𝑟 , 6𝑀𝑑 , 4𝑀𝑒 , 3 𝐵𝑛
𝑍𝑣𝑠𝑍 10 𝑍𝑟 , 6 𝐵𝑙 , 4𝑀𝑢
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Figure 3: Pareto fronts at every 10𝑡ℎ generation. Each team
is composed from three different types of agents.

training and testing scenarios. Here,𝑍𝑟 and 𝐵𝑙 are melee agents and
𝑀𝑢 is a ranged agent. Using our potential field based representation,
the NSGA-II evolved a diverse set ofmicro behaviors. Figure 3 shows
the evolution of micro behavior for every 10𝑡ℎ generation and we
observed a significant difference between the first (0𝑡ℎ) and the last
(50𝑡ℎ) generation pareto front solutions. A fitness (1, 0.81) specifies
that all ET agents died and OT agents had 81% remaining health
at the end of skirmish. In figure 3, the last generation pareto front
solutions shows a range of behaviors from fleeing to aggressive.
Own team agents were able to eliminate all enemy team agents
while receiving little damage (1, 0.81).

5.2 Four Different Types of Agents
Figure 4 shows pareto fronts when playing with OT terran agents
against identical ET terran agents controlled through SC2AI. The
terran agents combination has many different unique abilities. For
example, Marine𝑀𝑟 is a ranged agent with ability to attack ground
and air targets but low on health.Whereas Marauder𝑀𝑑 is a ranged,
strong agent (high health), attacks only ground targets and can also
protect𝑀𝑟 from receiving damage thus both form a good combina-
tion together. Additionally, Medivacs 𝑀𝑒 have the ability to heal
both𝑀𝑟 and𝑀𝑑 .𝑀𝑒 is a healer not attacker thus to add more fire
power Banshees 𝐵𝑛 are added into 4𝑣4 terran team configuration.
𝐵𝑛 is a strong flying agent and can only attack ground targets.
As shown in fig 4, terran agents improved their performance sig-
nificantly from initial generation to last generation in terms of
damage done and damage received. OT terran agents learned effec-
tive strategies to counter the swarm of ET terran agents by figuring
out weakness in their strategy. 𝐵𝑛 of OT eliminates the𝑀𝑟 of ET
and remember in this team setting,𝑀𝑟 is the only agent that can
attack aerial targets.

5.3 Five Different Types of Agents
Table 2 shows the team combination with 27 agents from five differ-
ent types of protoss race agents. Figure 5 shows the pareto fronts
at every 10𝑡ℎ generation when OT protoss agents play against an

Figure 4: Pareto fronts at every 10𝑡ℎ generation. Each team
is composed from four different types of agents.

identical ET protoss agents controlled through SC2AI. The agents
in such combination includes agents with variety abilities.For ex-
ample, zealots 𝑍𝑒 are strong ground attack melee agents. The melee
nature of 𝑍𝑒 makes them more vulnerable against agents with large
firing range. On the other hand, Stalkers 𝑆𝑡 are fast moving, ranged
agents and have the ability to attack both ground and air targets.
𝑍𝑒 and 𝑆𝑡 together make a formidable combination against any ETs.
The 5𝑣5 protoss agents combination includes an agent called "Sen-
try" 𝑆𝑒 , an agent with a unique ability to create force fields (for a
time) that block movement of any ground agents. These force fields
are used extensively to defend own agents or infrastructure. In addi-
tion to these agents, the combination also includes Void Ray𝑉𝑟 and
Adept𝐴𝑑 .𝑉𝑟 is a flying agent with the ability to attack both ground
and air targets, and 𝐴𝑑 is a ground attack agent. The five types, 𝑍𝑒 ,
𝑆𝑡 , 𝑆𝑒 , 𝑉𝑡 , and 𝐴𝑑 make a strong combination of agents with high
defense and attack capability. As shown in figure 5, initially, in the
0𝑡ℎ generation our agents performed poorly but gradually improve
over a period of 50 generations. The last generation pareto front
(50𝑡ℎ) shows a variety of micro including fleeing, balanced, and
aggressive.

5.4 Experiments on Testing Scenarios
To measure the robustness of evolved solution, we picked an ag-
gressive micro from the last generation pareto front and tested the
performance on two unseen scenarios as shown in figure 6. We ran
25 simulation with different starting position on each of the two
testing scenario. For 5𝑣5, the averaged fitness obtained on the first
scenario (a) is (0.88, 0.27), and the averaged fitness on the second
scenario (b) is (0.83, 0.11). On the first testing scenario, agents get
chance to quickly gather to attack opponents and this leads to bet-
ter fitness compared to the second scenario. Similar experiments
were conducted with different teams as well and the results indicate
that evolved solutions performed well on unseen scenarios. This
provides evidence of the generalizability of our proposed evolution
distributed control approach to evolve high performing diverse
tactics against opponents.
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Figure 5: Pareto fronts of every 10𝑡ℎ generation. Each team
composed from five different types of agents.

6 CONCLUSION
Using an RTS game as a test-bed, we evolved tactics for groups
composed from upto five different types of units and up to 27 total
numbers of units using NSGA-II. Our approach uses influence maps
and a set of potential fields to guide agents in dynamic environ-
ment in real-time. We formulated this problem as a multi objective
optimization problem and used NSGA-II to tune potential fields and
influence map parameters. The results shows that our evolution-
ary multi-objective optimization based approach evolves different
strategies by tuning IMs and potential field parameters. Our ap-
proach is simple to implement, understand and thus enables human
operators to better understand actions taken by an agent. This has
potential to make overall human machine cooperation effective and
safer.
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