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ABSTRACT
This work presents an evolutionary approach for assessing the
robustness of a system trained in the detection of software vulnera-
bilities. By applying a Grammatical Evolution genetic algorithm,
and using the output of the system being assessed as the fitness
function, we show how we can easily change the classification
decision (i.e. vulnerable or not vulnerable) for a given instance by
simply injecting evolved features that in no wise affect the function-
ality of the program. Additionally, by means of the same technique,
that is by simply modifying the program instances, we show how
we can significantly decrease the accuracy measure of the whole
system on the dataset used for the test phase.

Finally we remark that these methods can be easily customized
for applications in different domains and also how the underlying
ideas can be exploited for different purposes, such as the exploration
of the behaviour of a generic neural system.

CCS CONCEPTS
• Security and privacy → Software and application security;
• Computing methodologies → Genetic algorithms; Neural net-
works.
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grammatical evolution, deep learning, adversarial examples, com-
puter security, security assessment
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1 INTRODUCTION
Statistical classification, namely the problem of assigning, given a
set of instances and a set of categories, an instance to the correct
category, has been widely studied in the years, especially with the
diffusion of machine learning methods since the ’80s [17].
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Several examples exist for illustrating the significance of clas-
sification algorithms in a wide variety of domains: it suffices to
think to natural language processing (NLP) techniques for senti-
ment analysis [21], to tasks related to image classification [6] or, in
the wider sense, to the methods for grouping the elements of a set
according to their similarity (e.g. cluster analysis [8]). The interest
is also in the field of cybersecurity: as simple examples, phishing
and spam detectors [14] but also malware detectors [13] are all
evidences of the importance of being able to effectively distinguish
between what is safe to what it is not, and thus to classify objects
such as emails, files and programs.

However, binary classifiers are often susceptible to classification
errors. While in some cases such misclassifications only affect the
accuracy measure, in some scopes the presence of false positive
or false negative is crucial; just think, as an example, to antivirus:
in this context, a false positive malware alert it is not a big deal,
while a false negative could be critical. For this reason, evaluating
the robustness of a classifier is essential. If a classifier system is
widespread, it is possible that an attacker looks for features of input
source code that make it evade the surveillance. The system has to
be evaluated with respect to such risks.

When this task is related to image classification, where instances
are vectors of values from a continuous domain (pixel colors), the
approach is to check the results of small variations of input values.
The challenge is harder when instances are source code fragments,
where each variation on their feature values is actually a variation
of a syntactic (sub)tree, which must obey the grammar of the chosen
programming language.

In this work, we are interested in designing an evolutionary
approach for assessing the robustness of a classification system by
producing program instances that mislead a system trained in the
detection of software vulnerabilities. In other words, our goal is to
synthesise vulnerable programs that will be classified as safe by the
system, or vice versa. To this end, this work offers the following
contributions:

• A novel evolutionary approach for synthesising programs
using, as the fitness function, the output of a neuron in a
neural model.

• The application of this approach in the construction, or adap-
tation, of a dataset so that it leads to a high percentage of false
negative (or, possibly, false positive) misclassifications on a
network trained in the detection of software vulnerabilities.

• The use of the best individuals for characterising the syntac-
tical features that mainly stimulate a given neuron.
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• How such characterization can be used for modifying the
input instances of a classifier in order to arbitrarily change
the classification decision.

The rest of the paper is organized as follows:
Section 2 is a short overview of how the topics considered

are approached in this work. In particular, it discusses how
machine learning techniques have been exploited for de-
tecting and classifying software vulnerabilities, it describes
how Grammatical Evolution (GE) can be employed for pro-
gram synthesis and it briefly presents adversarial machine
learning approaches and explainability in neural networks.

Section 3 describes the approach proposed, namely the appli-
cation of GE in the synthesis of programs aiming to deceive
a neural network trained in vulnerability detection, and in-
troduces some terminology used in the paper.

Section 4 presents the experimental settings, the adopted li-
braries, tools and methods, and details all the experiments
we designed and performed. It finally reports the outcomes
obtained.

Section 5 discusses the results and gives intuition of their in-
terest and relevance. In particular, we examine how the wide
range probing of the classifier behavior via GE-evolved indi-
viduals allows us to discover its weaknesses and to use them
for deceiving it.

Section 6 finally provides a summary of the ideas contained
in this paper and suggests how the insights yielded by our
results can be transferred and adopted in several different
domains.

All the results described in this paper, along with the source
code, are available in a public repository1.

2 RELATEDWORK
In this work, we present an evolutionary-based pipeline for program
synthesis, with the aim to assess the robustness of a classifier trained
in the detection of software vulnerabilities, given the source code.
This section provides a brief literature overview of the main topics
involved in our discussion, focusing the attention on the perspective
we are interested in.

2.1 Machine learning for vulnerability
detection

Classifying programs or, more in general, the problem of automati-
cally identifying a correct tag or property for a snippet of source
code is significant in several fields, and it is quite often addressed by
the use of machine learning techniques. For instance, the authors
of [22] propose a Convolutional Neural Network (CNN) for classi-
fying programs according to their functionality, while other works
strive to predict a word or a short sentence that summarizes the
purpose of the code using different techniques such as a CNN based
on the attention model [2] or a source code embedding derived
from the abstract syntax tree [3].

In the field of cybersecurity, aside from the classical static and
dynamic analysis techniques for detecting malware [13] or vul-
nerabilities [20], in this context we are particularly interested in

1https://github.com/Martisal/adversarialGE

vulnerability detection with machine learning approaches. To this
end, many works can be mentioned: for instance, in [32] a program
embedding and common usage patterns are used for identifying
functions vulnerable to known weaknesses, the authors of [9] pro-
pose a Long Short Term Memory network for detecting vulnerabili-
ties in PHP programs, while [19] is a complete deep learning-based
framework for the identifying weaknesses in C programs.

In the rest of this paper, we will particularly refer to the network
for vulnerability detection proposed in [28], since our experiments
are focused on producing adversarial examples for that model,
through the design of a GE-based pipeline that can be easily adapted
to different neural models.

2.2 Program synthesis with GE
Grammatical Evolution [25] is an evolutionary algorithm that, sim-
ilarly to what Genetic Programming (GP) [16] does with syntax
trees, can evolve programs (represented through a binary string)
that comply with a given formal grammar expressed in Backus-
Naur Form (BNF). For its inherent nature, GE can be applied for
addressing the problem of program synthesis [5]. Although a recent
work [30] illustrates some of its limitations in effectively solving
general related tasks, other works point out its effectiveness under
certain conditions. In particular, since the process of synthesising
a program is evidently connected to the features of the specific
programming problem to be solved, the authors of [12] show how
the knowledge of the problem domain can be used for designing a
grammar that effectively features productions that enable actions
useful towards the solution of the problem itself. A similar intuition
is exploited in [24], where GE is used for synthesising programs
that solve the classical problem of integer sorting.

Starting from these results, we propose a GE algorithm that
can be used for producing programs to be used for misleading a
classifier, by proposing a simplified C grammar (Figure 8) with only
a small subset of relevant functions included in the productions.

2.3 Adversarial examples and explainability
Any machine learning result obtained by using deep neural net-
works has one limit: it suffers the fact that the neural network is
mostly a black box, with respect to the explainability of how it is
producing its output and whether it hides problematic decision
points. Evidence of this is discussed in works related to adversarial
examples, which are input instances crafted to fool state-of-the-art
neural networks. In addition, another key element is that such ad-
versarial instances can also be only slightly different from instances
which instead are correctly classified by the same machine.

This is especially apparent in the field of image recognition [11],
where some research results show how to find images which are
strong adversarial examples, usually by examining the gradient of
the cost function of the given backpropagation network [11]. Similar
adversarial instances can be constructed for models built for source
code processing, simply by applying basic semantic-preserving
perturbations to the source code, for instance by renaming some
identifiers or by introducing unused variables [33, 34], or more
sophisticated ones, such as by using different control flow structures
or by changing the API usage [27].
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Figure 1: First class of experiments. Fitness function is the
output of the network given the pure evolved individual as
input.

maximize
output

for TN

minimize
output

for TP

Figure 2: Second class of experiments. Fitness function is the
output of the network given an hybrid input obtained by in-
jecting an evolved individual in a true positive (if minimis-
ing the fitness) or a true negative (if maximising the fitness)
instance of the original dataset.

Getting back to the image processing field, in [23] the adversarial
examples are generated both by gradient ascent and by using evo-
lutionary algorithms. In our work we apply a similar evolutionary
approach for the domain of source code classification instead of
that of images.

When looking for adversarial examples, new knowledge is gath-
ered about the behavior of the network, and this knowledge helps
us in the explanation of what is happening inside it [7]. Given the
increasing role of machine learning systems in many decisions
impacting the society, or just the security of many modern sys-
tems, the explainability of artificial intelligence tools is a growing
research area [1, 31]. We will make some remarks on how our re-
sults relate to the topics of assessment and explainability of trained
classifiers.

3 PROPOSED APPROACH
In this paper, we propose an evolutionary approach for assessing
the robustness of a model trained in the detection of software vul-
nerabilities. The founding idea is to synthesise input instances able
to lead the network to a wrong classification decision, by explor-
ing the space of possible solutions using a GE algorithm, with the
numerical output of the model as the fitness function. This insight
allows us to efficiently explore the behaviour of a classifier by lever-
aging an evolutionary pressure instead of randomly sampling the
solution space, and thus to possibly discover some blind spots or
some features that can mislead the model.

P N P N

Figure 3: Classification experiments. The original dataset
(on the left) is modified to generate a new dataset (on the
right) by injecting, in all the instances, an evolved individ-
ual.

The authors of [28] propose a tool for detecting software vul-
nerabilities using a deep feature representation based on a lexical
tokenization of the source code. In that work, an approach derived
from classical NLP techniques for sentiment analysis [15] is de-
veloped for classifying programs which are potentially vulnerable
to known categories of software weaknesses (CWE2). Using this
model as a benchmark, we designed three classes of experiments:

• The evolution of pure individuals able to maximize or mini-
mize the output of the network, as summarized in Figure 1.
In these experiments, the fitness function is computed as the
output of the network given the evolved individual as the
input.

• The injection of evolved individuals in functions of the origi-
nal dataset, in a way that does not affect the behaviour of the
function (i.e. after the return statement, as will be explained
in Section 4). In this case, the fitness function is computed as
the output of the network given as input the hybrid program
consisting of the original functions modified with the injec-
tion, as outlined in Figure 2. The aim of these experiments
is to arbitrarily change the classification decision for a given
instance, namely to maximise the fitness if starting from
functions classified as negative and vice versa.

• The injection of evolved individuals in all the original test set,
in order to change the classification statistics of the network
(Figure 3). The goal is to assess our approach by analysing
how accuracy, precision and recall change depending on how
and which evolved individuals are used for the injection.

For ease of reference, we summarize below some terminology
that will be used in the rest the paper.

Individual An evolved program P. It consists of a snippet of
code that complies with the formal grammar specified in
Figure 8. Examples can be found in Figures 4 and 5.

Pure individual An evolved program P whose fitness func-
tion 𝐹 : P ↦→ [0, 1] is computed as the output of a neural
model given P as input.

Hybrid individual An evolved programP whose fitness func-
tion 𝐹 : P ↦→ [0, 1] is computed as the output of a neural
model given as input an instance P0 from the dataset after
the semantic-preserving injection of P.

2https://cwe.mitre.org/
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Figure 4: Example of an evolved individual, maximised fit-
ness function.

Figure 5: Example of an evolved individual, minimised fit-
ness function.

Semantic-preserving injection The addition of instructions
in a program that do not alter the semantic of the program
itself. In this paper, we consider only the following transfor-
mations: given two programs P0 and P, we call the semantic-
preserving injection of P in P0 the addition of the instruc-
tions contained in P after the return statement of P0.

Positive (or negative) instance We refer to the vulnerable
(or safe) programs in the dataset as positive (or negative)
instances. It will be clear in turn if positive (or negative)
refers to the ground truth or to the classification decision of
the model.

4 EXPERIMENTS
We organized experiments along two directions: the use of GE to
evolve source code fragments, forcing their binary classification by
a given trained neural network, and to check how selected evolved
individuals could be good to alter the classification of any instance
from a labeled dataset.

The goal is to show how easily an attacker can mask the vulnera-
bilities in any source code instance, and thus to foil the classification
by a neural network, even if treated as a black box.

As a benchmark, we considered the deep learning classifier pre-
sented in [28], working with a 94% accuracy after training on the
dataset curated by the same research group3, and all our experi-
ments have been performed on a test section of the same dataset,
not used during the training phase.

3available at https://osf.io/d45bw/

4.1 Experimental Settings
The neural classifier is based on a preprocessing of source code
where each instance, i.e. a C language function, is tokenized by a
lexer, and then input to a deep stack of feedforward layers, including
a 1-dimensional convolution, terminating in a single output value
ranging from 0 to 1. The classification of the instance is positive
(vulnerable) when the output value is higher than 0.5, negative
otherwise. In particular, we trained the network on the supervised
task of recognising vulnerabilities of type CWE-120 (classic buffer
overflow).

The dataset, consisting in over one million labeled C functions,
has been split in three folds, with ratio 80/10/10, used respectively
for training/validation/testing. We remark that each of these folds
has a number of instances strongly unbalanced between the two
classes. During training, the number of instances of the two classes
has been kept in a ratio of 5 negative instances for each positive
instance.

The trained model exhibits a good accuracy of 94% on the test set,
and among the available performance indices we will consider the
precision/recall area under curve (P/R-AUC), more suitable given
the unbalanced set of instances being used. The trained network
has a P/R-AUC index of 0.42 on the chosen test set.

All the experiments have been done on a Linux machine with
16GB RAM and a Nvidia GTX 1070 GPU. The training phase took
around 3 hours.

4.2 Grammatical Evolution
The library used for doing grammatical evolution of individuals
consisting of C language functions is PonyGE2 [10]. The grammar,
in Figure 8, has been derived from a realistic C language gram-
mar by reducing the set of productions mainly to: declaration and
use of integer, char, and buffer variables, single function declara-
tion and call of functions from a small set of standard C functions.
The choices controlling all evolutionary runs were: generational
replacement, with elite of size 1, selection by tournament of size
3, with mutation and one-point crossover. All runs evolved for 33
generations, and individuals were of tree depth limited to 30.

In particular, we could specify to compute the fitness of indi-
viduals by preprocessing each of them as required by the neural
classifier (by using the same tokenizing lexer built during training),
and then reading the real valued classifying output of the network.
Therefore, the fitness guiding the evolution of individuals was a
value between 0 an 1, where values above 0.5 meant that the indi-
vidual was being classified as vulnerable (w.r.t. CWE-120, in our
case).

We remark that the tokenization considered only the 10000 most
frequent words from the dataset, including C identifiers, operators,
keywords and punctuation. The grammar we used to generate GE
individuals (Figure 8) was built to produce both known (tokenized)
identifiers as well as new ones, which are ignored by the tokenizer.
For instance, the non-terminal identifier in our grammar in-
cludes both buf, known to the tokenizer defined during training,
and id1 which is not. This design choice is made in order to allow
the GE to sample the input space with more freedom, so that ad-
versarial examples could go beyond what the training set offered
as dictionary.
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Table 1: Summary of the statistics obtained in the classifi-
cation experiments. Minimized and Maximized rows refer
to the dataset modified by injecting one of the minimis-
ing and maximising evolved individuals, respectively; the
PureMaxMin row refers to the dataset modified by inject-
ing a random maximised pure individual in the negative
instances and a random minimised pure individual in the
positive instances; finally HybrMaxMin refers to the dataset
where instances have been injectedwith a randomhybrid in-
dividual, chosenmatching the label of the instance as above.
Last column reports the 𝑝-value obtained by performing the
Mann-Whitney U Test on a sample from the dataset spec-
ified in the first column and a sample from the original
dataset.

Dataset Accuracy P/R-AUC F1 𝑝-value

Original 0.94 0.42 0.51 (≈ 0.29)
Minimized 0.95 0.29 0.41 ≈ 10−3
Maximized 0.17 0.06 0.08 ≈ 10−29
PureMaxMin 0.67 0.06 0.1 ≈ 10−15
HybrMaxMin 0.18 0.02 0.03 ≈ 10−26

Each evolutionary run was processed on the same machine we
used for the training phase, and took less than 1 minute.

4.3 Results of GE runs
Given the two experimental platforms we described, a GE system
to evolve C language functions, and a deep network trained to
recognize buffer overflow vulnerabilities, we present the set of
experiments we performed to assess the weaknesses of the neural
classifier.

First, we verified how the GE system performed when required
to define C functions classified as vulnerable (or non vulnerable),
that is maximising the fitness function (or minimizing, respectively),
with its value defined by inferring the classification of each individ-
ual of the evolving population. Even with the simplified grammar
we used, both goals (neural output value above or below 0.5) have
been easily reached on each evolutionary run.

An interesting outcome is that C functionsmaximising the fitness
have been consistently short (less than 100 characters), while the
individuals minimising it were always much longer (see examples
in Figures 4 and 5).

We will refer to the individual produced in this first example
as pure, being evolved with no reference to C functions from the
dataset, and considered as positive when maximising the fitness,
and as negative in the opposite case.

The second set of experiments has been aimed at evolving, by
GE, C fragments to be injected in existing instances. We chose
from the dataset some instances labeled as vulnerable and some
not vulnerable. Then, starting from single given instance, we per-
formed evolutionary runs where each GE individual was inserted
in it, and the fitness was evaluated on the resulting source code of
the function (see Figure 2). The individual was inserted in a way

Table 2: Confusion matrix of the classification results ob-
tained on the original test set (Original in Table 1)

Truth Class. Negative Class. Positive

Negative 116608 5920
Positive 1172 3719

Table 3: Confusion matrix of the classification results ob-
tained on the test set modified by injecting, in each instance,
one of the minimizing individuals evolved through the sec-
ond class of experiments (see Figure 2, and row Minimized
in Table 1).

Truth Class. Negative Class. Positive

Negative 118946 3582
Positive 2683 2208

not to change the actual behavior of the given function, namely by
appending it inside the instance right before the closing bracket,
after any return, effectively becoming dead code with no effect at
compile or run time. Other simple semantics-preserving transfor-
mations could also be used, such as blocks controlled by a condition
which will never be true. The same has been done both for positive
and for negative instances, and in the following we will refer to
those modified instances as hybrid individuals.

In this way, we looked for a way to mask a possible vulnerability
in a function to be classified, or conversely to force a positive clas-
sification of a function actually non vulnerable. Every experiment
in this set has been successful, always finding an individual which,
when injected in a given labeled function, made that same function
being wrongly classified by the neural network. We observed that
with this setting the winning individuals were more complex than
those evolved as pure, as was expected, given the task to mask
some vulnerability properties of the given enclosing function. The
progress towards individuals with the wanted fitness (positive or
negative) was still quite fast during each GE runs (compare Figures 6
and 7).

4.4 Results on the Classifier
We used the set of C source code fragments produced by GE, pure
and hybrid individuals, to finally assess the robustness of the trained
neural network in recognizing vulnerabilities in known instances.

The first check has been done by injecting pure individuals in
known instances, with these obvious cautions: from the evolved
functions we extracted only the body, and we inserted it in the
instances so to obtain a function which was different, but syntac-
tically correct and with the same original behavior (as explained
before). The chosen pure individual was always generated with a
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Figure 6: Fitness of the pure individuals evolved in the first class of experiments (Figure 1). Plots are built by considering the
mean of the fitness values obtained over 10 runs, with vertical bars reporting the standard deviation. Dashed lines indicate the
average fitness of the population at each generation, while continuous lines indicate the fitness of the best individual at each
generation. Notice that, for the minimization experiments, plots are in logarithmic scale.
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Figure 7: Fitness of the hybrid individuals evolved in the second class of experiments (Figure 2). Plots are built by considering
the mean of the fitness values obtained over 10 runs, with vertical bars reporting the standard deviation. Dashed lines indicate
the average fitness of the population at each generation, while continuous lines indicate the fitness of the best individual at
each generation. Notice that, for the minimization experiments, plots are in logarithmic scale.

Table 4: Confusion matrix of the classification results ob-
tained on the test set modified by injecting, in each instance,
one of the maximising individuals evolved through the sec-
ond class of experiments (see Figure 2, and row Maximized
in Table 1).

Truth Class. Negative Class. Positive

Negative 16585 105943
Positive 43 4848

target fitness corresponding to a classification which was opposite
to the true classification of the given instance.

Table 5: Confusion matrix of the classification results ob-
tained on the test set modified by injecting, in each posi-
tive instance, a random pure minimised individual and, in
each negative instance, a random maximised pure individ-
ual. Minimised and maximised individuals are randomly
chosen among the best pure individuals found in different
runs of the first class of experiments (see Figure 1 and Fig-
ure 3, and row PureMaxMin in Table 1).

Truth Class. Negative Class. Positive

Negative 83185 39343
Positive 2394 2497
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Table 6: Confusion matrix of the classification results ob-
tained on the test set modified by injecting, in each posi-
tive instance, a random hybrid minimised individual and,
in each negative instance, a randommaximised hybrid indi-
vidual. Minimised andmaximised individuals are randomly
chosen among the best hybrid individuals found in different
runs of the second class of experiments (see Figure 2 and Fig-
ure 3, and row HybrMaxMin in Table 1).

Truth Class. Negative Class. Positive

Negative 21277 101251
Positive 3404 1487

The results, reported in Tables 1 and 5, showed that we could
deceive the network with high probability, by leading it to classify
the modified instances in a way opposite to the true label. The
P/R-AUC index on the set made of injected instances indeed drops
from 0.42 to 0.06.

Some performance difference between the evolutionary build-
ing of pure individuals, where the fitness was evaluated just on
the pure individuals, and the classification of the test set made of
transformed instances, where each modified function was evalu-
ated, was expected. We avoided it in the experiments we conducted
with hybrid individuals. We assessed the performance of the neural
network on the test set where, this time, each instance was injected
with a code fragment, defined by GE when aimed at changing the
classification of a single original given instance.

Such masking of instances, by individuals evolved to perform in
the context of a different given function, has been successful since
the neural classifier showed a worsened performance measured
by a P/R-AUC down to 0.02, as reported in Tables 1 and 6. As a
further evidence of the statistical significance of our experiments,
we reported, in the last column of the table, the 𝑝-values obtained
with the Mann-Whitney U test on the different, modified, datasets
compared with the original one. In all cases, assuming a significance
level 𝛼 = 0.01, the null hypothesis can be rejected, stating that our
evolutionary approach is always able to produce solid adversarial
examples.

A complete overview of results can be found in Tables from 1 to
6, where more details are reported, in terms of both performance
indexes and of confusion matrices for the experiments detailed
above (and two additional ones).

Confusion matrices, specifically, highlight how each injection
experiment is changing the classification decision for the test in-
stances, towards being wrongly classified as positive or negative,
according to our goal for each specific experiment.

5 DISCUSSION
We now discuss our experimental results to show how our tech-
nique builds an effective attack to the classification task of a given
machine learning system. The specific domain we are considering,
namely that of source code classification, does not allow us to find
adversarial examples by simply computing a gradient descent (or

ascent) considering the output of the network as the loss function,
with respect to a continuous input feature space. This is the main
challenge, compared to the more common goal of attacking image
recognition systems.

Therefore, all the experiments have been designed to overcome
this difficulty in exploring the discrete input space of possible source
code instances. The results show that this can be done by mean of
an evolutionary system, guided by the output of the neural network
taken as a fitness evaluation.

To assess the relevance of our results, we can now describe the
threat model [26] (or the assessment goals) we are considering, on
a given classifying machine learning system:

• the attacker can operate only after the training phase, during
testing or after the deployment of the system;

• the attacker knows only a few instances from the test set;
• the attacker can only know the output of the classifier for
any input instance he chooses, and this can be considered as
a classification probability; the internal structure, parameters
and working of the system, instead, are not visible;

• the attacker has the goal of letting the classifier accept, with
high probability, vulnerable source code which he does not
choose, but which he can alter, so long as the original func-
tionality is conserved.

With this setting, our technique allowed us to successfully attack
the simple classifier system we chose. Moreover, the low compu-
tational effort required to deceive the neural network, and the
flexibility of the GE system in successfully adapting to our several
experimental settings listed in previous section, suggests that the
approach is promising, and that it can be checked against more
sophisticated deep learning systems. We expect that for more com-
plex systems, or even non neural classifiers, the exploration of the
input space done with our approach could be effective, albeit it
could require different parameters that control the evolution of the
genetic system.

Moving to the focus of whether the adversarial examples we
discovered contributes to the explanation of the neural network
behavior, our finding are positive but only preliminary. For in-
stance, we checked whether our minimizing adversarial examples
showed preference for including dangerous functions, among those
which could be generated by the grammar, such as strcpy() or
strncpy(). We found that such bias, emerging from the training
of the network, is apparent, finding that only individuals produced
to maximise the classifier output (i.e. making it declare the input
instance to be vulnerable) often contains such vulnerable functions,
and conversely the opposite is true for minimizing individuals.

6 CONCLUSION AND FUTUREWORK
This work describes a novel approach for exploring the behaviour
of a neural network using an evolutionary approach. The proposed
application consists in the exploitation of the output of a classifier
as the fitness function of a GE algorithm that is able to lead the
production of adversarial examples which can deceive the model.

The results obtained are very promising, and thus suggest many
further research directions. As a first, immediate extension of this
work one can think use the adversarial examples for extending the
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Figure 8: BNF grammar used in all the experiments.

training set and increasing the robustness of the whole model, as
in the classical adversarial training techniques.

More in general, the insights and the founding ideas provided
in this work can be used for analysing the internal behaviour of
a neural network. In the literature, many works highlight the in-
terest in studying the behaviour of single internal neurons of a
network [4, 18]. In the field of source code processing, a recent
work [29] proposes methods for identifying particular neurons
which are able to solve specific tasks (e.g. recognising programs
with certain properties) or that are important for the network, re-
gardless of a given task. Our GE-based approach could be used for
maximising the activation value of such neurons and thus, eventu-
ally, for synthesising program satisfying given specifications.

ACKNOWLEDGMENTS
We would like to thank Luca Manzoni (University of Trieste) for
pointing us, in an early discussion, to use Grammatical Evolution

for addressing our problem, and the anonymous reviewers for the
useful suggestions.

REFERENCES
[1] A. Adadi and M. Berrada. 2018. Peeking Inside the Black-Box: A Survey on

Explainable Artificial Intelligence (XAI). IEEE Access 6 (2018), 52138–52160.
https://doi.org/10.1109/ACCESS.2018.2870052

[2] Miltiadis Allamanis, Hao Peng, and Charles A. Sutton. 2016. A Convolutional
Attention Network for Extreme Summarization of Source Code. In Proceedings of
the 33nd International Conference on Machine Learning, ICML. 2091–2100.

[3] Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. 2019. code2vec: learning
distributed representations of code. Proceedings of the ACM on Programming
Languages 3, POPL (2019), 40:1–40:29.

[4] Fahim Dalvi, Nadir Durrani, Hassan Sajjad, Yonatan Belinkov, Anthony Bau, and
James R. Glass. 2019. What Is One Grain of Sand in the Desert? Analyzing Indi-
vidual Neurons in Deep NLP Models. In Proceedings of the 33rd AAAI Conference
on Artificial Intelligence. AAAI Press, 6309–6317.

[5] Cristina David and Daniel Kroening. 2017. Program synthesis: challenges and
opportunities. Philosophical Transactions of The Royal Society A Mathematical
Physical and Engineering Sciences 375 (10 2017).

[6] Quhao Weng Dengsheng Lu. 2007. A survey of image classification methods and
techniques for improving classification performance. International Journal of

1896

https://doi.org/10.1109/ACCESS.2018.2870052


Deceiving Neural Source Code Classifiers:
Finding Adversarial Examples with Grammatical Evolution GECCO ’21 Companion, July 10–14, 2021, Lille, France

Remote Sensing 28, 5 (2007), 823–870.
[7] Yinpeng Dong, Hang Su, Jun Zhu, and Fan Bao. 2017. Towards interpretable

deep neural networks by leveraging adversarial examples. arXiv preprint
arXiv:1708.05493 (2017).

[8] Benjamin S. Duran and Patrick L. Odell. 2013. Cluster analysis: a survey. Vol. 100.
Springer Science & Business Media.

[9] Y. Fang, S. Han, C. Huang, and R. Wu. 2019. TAP: A static analysis model for
PHP vulnerabilities based on token and deep learning technology. PLoS ONE
14(11) (2019).

[10] Michael Fenton, James McDermott, David Fagan, Stefan Forstenlechner, Erik
Hemberg, and Michael O’Neill. 2017. PonyGE2: grammatical evolution in Python.
In Companion Material Proceedings of Genetic and Evolutionary Computation
Conference. ACM, 1194–1201.

[11] Ian Goodfellow, Jonathon Shlens, and Christian Szegedy. 2015. Explaining and
Harnessing Adversarial Examples. In International Conference on Learning Repre-
sentations. http://arxiv.org/abs/1412.6572

[12] Erik Hemberg, Jonathan Kelly, and Una-May O’Reilly. 2019. On domain knowl-
edge and novelty to improve program synthesis performance with grammatical
evolution. In Proceedings of the Genetic and Evolutionary Computation Conference,
GECCO, Anne Auger and Thomas Stützle (Eds.). ACM, 1039–1046.

[13] Nwokedi Idika and Aditya P. Mathur. 2007. A survey of malware detection
techniques. Purdue University 48 (2007), 2007–2.

[14] Asif Karim, Sami Azam, Bharanidharan Shanmugam, Krishnan Kannoorpatti,
and Mamoun Alazab. 2019. A Comprehensive Survey for Intelligent Spam Email
Detection. IEEE Access 7 (2019), 168261–168295.

[15] Yoon Kim. 2014. Convolutional Neural Networks for Sentence Classification.
In Proceedings of the 2014 Conference on Empirical Methods in Natural Language
Processing, EMNLP. ACL, 1746–1751.

[16] John R. Koza. 1992. Genetic programming: on the programming of computers by
means of natural selection. Vol. 1. MIT press.

[17] Pat Langley. 2011. The changing science of machine learning. Mach. Learn. 82, 3
(2011), 275–279.

[18] Quoc V. Le, Marc’Aurelio Ranzato, Rajat Monga, Matthieu Devin, Greg Corrado,
Kai Chen, Jeffrey Dean, and Andrew Y. Ng. 2012. Building high-level features
using large scale unsupervised learning. In Proceedings of the 29th International
Conference on Machine Learning, ICML. PMLR.

[19] Z. Li, D. Zou, S. Xu, H. Jin, Y. Zhu, and Z. Chen. 2021. SySeVR: A Framework for
Using Deep Learning to Detect Software Vulnerabilities. IEEE Transactions on
Dependable and Secure Computing (2021), 1–1.

[20] Bingchang Liu, Liang Shi, Zhuhua Cai, and Min Li. 2012. Software vulnerabil-
ity discovery techniques: A survey. In 2012 fourth international conference on
multimedia information networking and security. IEEE, 152–156.

[21] Bing Liu and Lei Zhang. 2012. A Survey of Opinion Mining and Sentiment
Analysis. In Mining Text Data. Springer, 415–463.

[22] Lili Mou, Ge Li, Lu Zhang, Tao Wang, and Zhi Jin. 2016. Convolutional Neu-
ral Networks over Tree Structures for Programming Language Processing. In
Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence. 1287–1293.

[23] AnhNguyen, Jason Yosinski, and Jeff Clune. 2015. Deep neural networks are easily
fooled: High confidence predictions for unrecognizable images. In Proceedings of
the IEEE conference on computer vision and pattern recognition. 427–436.

[24] Michael O’Neill, Miguel Nicolau, and Alexandros Agapitos. 2014. Experiments
in program synthesis with grammatical evolution: A focus on Integer Sorting.
In Proceedings of the IEEE Congress on Evolutionary Computation, CEC. IEEE,
1504–1511.

[25] Michael O’Neill and Conor Ryan. 2001. Grammatical evolution. IEEE Trans. Evol.
Comput. 5, 4 (2001), 349–358.

[26] N. Papernot, P. McDaniel, A. Sinha, and M. P. Wellman. 2018. SoK: Security and
Privacy in Machine Learning. In 2018 IEEE European Symposium on Security and
Privacy (EuroS P). 399–414. https://doi.org/10.1109/EuroSP.2018.00035

[27] Erwin Quiring, Alwin Maier, and Konrad Rieck. 2019. Misleading Authorship
Attribution of Source Code using Adversarial Learning. In 28th USENIX Security
Symposium, Nadia Heninger and Patrick Traynor (Eds.). USENIX Association,
479–496.

[28] Rebecca L. Russell, Louis Y. Kim, Lei H. Hamilton, Tomo Lazovich, Jacob Harer,
Onur Ozdemir, Paul M. Ellingwood, and Marc W. McConley. 2018. Automated
Vulnerability Detection in Source Code Using Deep Representation Learning.
In Proceedings of 17th IEEE International Conference on Machine Learning and
Applications, ICMLA. IEEE, 757–762.

[29] Martina Saletta and Claudio Ferretti. 2021. Mining Program Properties From
Neural Networks Trained on Source Code Embeddings. arXiv:2103.05442 [cs.SE]

[30] Dominik Sobania and Franz Rothlauf. 2020. Challenges of Program Synthesis with
Grammatical Evolution. In Proceedings of Genetic Programming - 23rd European
Conference (EuroGP), held as Part of EvoStar (Lecture Notes in Computer Science,
Vol. 12101). Springer, 211–227.

[31] Ning Xie, Gabrielle Ras, Marcel van Gerven, and Derek Doran. 2020. Explainable
deep learning: A field guide for the uninitiated. arXiv preprint arXiv:2004.14545
(2020).

[32] Fabian Yamaguchi, Felix "FX" Lindner, and Konrad Rieck. 2011. Vulnerability
Extrapolation: Assisted Discovery of Vulnerabilities Using Machine Learning.
In Proceedings of 5th USENIX Workshop on Offensive Technologies WOOT 2011.
118–127.

[33] Noam Yefet, Uri Alon, and Eran Yahav. 2020. Adversarial examples for models of
code. Proc. ACM Program. Lang. 4, OOPSLA (2020), 162:1–162:30.

[34] Huangzhao Zhang, Zhuo Li, Ge Li, Lei Ma, Yang Liu, and Zhi Jin. 2020. Gener-
ating Adversarial Examples for Holding Robustness of Source Code Processing
Models. In The 34th AAAI Conference on Artificial Intelligence, AAAI 2020, The
32nd Innovative Applications of Artificial Intelligence Conference, IAAI, The 10th
AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI. AAAI
Press, 1169–1176.

1897

http://arxiv.org/abs/1412.6572
https://doi.org/10.1109/EuroSP.2018.00035
https://arxiv.org/abs/2103.05442

	Abstract
	1 Introduction
	2 Related Work
	2.1 Machine learning for vulnerability detection
	2.2 Program synthesis with GE
	2.3 Adversarial examples and explainability

	3 Proposed Approach
	4 Experiments
	4.1 Experimental Settings
	4.2 Grammatical Evolution
	4.3 Results of GE runs
	4.4 Results on the Classifier

	5 Discussion
	6 Conclusion and Future Work
	Acknowledgments
	References

