
Labeling-Oriented Non-Dominated Sorting is Θ(𝑀𝑁 3)
Sumit Mishra

IIIT Guwahati

Assam, India

Ved Prakash

IIIT Guwahati

Assam, India

Maxim Buzdalov

ITMO University

Saint Petersburg, Russia

ABSTRACT
Non-dominated sorting is a common routine used in many evolu-

tionary multiobjective algorithms to rank solutions based on the

Pareto-dominance relation. Unlike many other problems appear-

ing in evolutionary computation, this problem has a simple formal

definition, a number of quite efficient algorithms to solve it, and is

relatively well understood.

Unfortunately, a number of recent papers that propose new, and

supposedly efficient, algorithms for non-dominated sorting, feature

inaccurate analysis, leading to overly optimistic claims. In this paper

we prove that a recent algorithm, called Labeling-Oriented Non-

Dominated Sorting, or LONSA, has the worst-case running time of

Θ(𝑀𝑁 3), where 𝑁 is the number of points and𝑀 is the number of

objectives, which is much greater than the quadratic upper bound

the authors claim. Our proof holds for all 𝑀 ≥ 4 and essentially

reduces LONSA to another algorithm, Deductive Sort, for which

the hard test has been constructed before.

CCS CONCEPTS
• Theory of computation→ Sorting and searching; • Mathe-
matics of computing→Mathematical optimization;

KEYWORDS
Non-dominated sorting, dominance comparisons, time complexity

ACM Reference Format:
Sumit Mishra, Ved Prakash, and Maxim Buzdalov. 2021. Labeling-Oriented

Non-Dominated Sorting is Θ(𝑀𝑁 3) . In 2021 Genetic and Evolutionary Com-
putation Conference Companion (GECCO ’21 Companion), July 10–14, 2021,
Lille, France. ACM, New York, NY, USA, 2 pages. https://doi.org/10.1145/

3449726.3459425

1 INTRODUCTION
In multiobjective optimization, the Pareto dominance relation, or

simply dominance, is defined as follows: a point 𝑝 dominates a point

𝑞, written as 𝑝 ≺ 𝑞, if the two following conditions are satisfied:

• ∀𝑚 ∈ {1, 2, . . . , 𝑀} 𝑝𝑚 ≤ 𝑞𝑚 ;

• ∃𝑚 ∈ {1, 2, . . . , 𝑀} 𝑝𝑚 < 𝑞𝑚 ;

where𝑀 is the number of objectives, and it is assumed that each

of the objectives needs to be minimized. If neither 𝑝 ≺ 𝑞 nor 𝑞 ≺ 𝑝 ,

the points 𝑝 and 𝑞 are said to be non-dominated with each other.

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

GECCO ’21 Companion, July 10–14, 2021, Lille, France
© 2021 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-8351-6/21/07.

https://doi.org/10.1145/3449726.3459425

Algorithm 1 LONSA

Require: P = {𝑠1, 𝑠2, . . . , 𝑠𝑁 }: points in𝑀-dimensional space

Ensure: F = {𝐹1, 𝐹2, . . .}: points from P split into fronts

1: array𝑥 ← Sort the population using the objective 1

2: array𝑦 ← Sort the population using the objective 2

3: 𝜏 ← 1

4: while P ≠ ∅ do
5: 𝐹𝜏 ← LONSA-MANY(P, array𝑥 , array𝑦)
6: F← F ∪ 𝐹𝜏
7: 𝜏 ← 𝜏 + 1
8: return F

Let P = {𝑝1, 𝑝2, . . . , 𝑝𝑁 } be a population of 𝑁 points, each of

dimension 𝑀 . Non-dominated sorting is a procedure that produces

a set of fronts F = {𝐹1, 𝐹2, . . .} such that the following holds:

• The union of all fronts is the whole population:

⋃
𝑘≥1 𝐹𝑘 = P;

• The fronts are disjoint: ∀𝑖 ≠ 𝑗 𝐹𝑖 ∩ 𝐹 𝑗 = ∅;
• All the points in a particular front are non-dominated with

each other: ∀𝑘 ≥ 1 ∀𝑝, 𝑞 ∈ 𝐹𝑘 : 𝑝 ⊀ 𝑞, 𝑞 ⊀ 𝑝;

• The first front consists of points that are not dominated by

any point: ∀𝑞 ∈ 𝐹1 �𝑝 ∈ P : 𝑝 ≺ 𝑞;

• All the points in any front except for the first one are dom-

inated by at least one of the points in the preceding front:

∀𝑞 ∈ 𝐹𝑘 , 𝑘 > 1 ∃𝑝 ∈ 𝐹𝑘−1 : 𝑝 ≺ 𝑞.

Non-dominated sorting was proposed for use in multiobjective

optimization as a part of NSGA [5] with an algorithm of time com-

plexity Θ(𝑀𝑁 3), and made popular in the paper that proposed

NSGA-II [2] along with an algorithm of time complexity Θ(𝑀𝑁 2).
Since then, many different algorithms with various efficiency have

been proposed to solve this problem. One of the reasons is that

non-dominated sorting appears to have no trivial and efficient al-

gorithm, and even its theoretical computational complexity is not

yet well-understood [6].

In this paper we consider the algorithm titled “Labeling-Oriented

Non-Dominated Sorting Algorithm”, or LONSA, proposed in [1].

Its basic idea is to first perform pre-sorting of the points in the first

two objectives and store the points in these orders in two arrays,

array𝑥 and array𝑦 , which are then used to accelerate the pretty

standard procedure of peeling the fronts one by one, beginning

with the first one, similar to what the first proposed algorithm

in [5] does. The top-level algorithm is given in Algorithm 1, and

the front peeling procedure, which is used when𝑀 > 2, is given in

Algorithm 2.

The basic idea of Algorithm 2 is to maintain a label on each point,

which can take one of three values: #1 means the point has not

been yet evaluated, #2 means it probably belongs to the current

front being peeled off, and #3 means it was dominated by one of

the remaining points and hence does not belong to the current

189

https://doi.org/10.1145/3449726.3459425
https://doi.org/10.1145/3449726.3459425
https://doi.org/10.1145/3449726.3459425

GECCO ’21 Companion, July 10–14, 2021, Lille, France Sumit Mishra, Ved Prakash, and Maxim Buzdalov

Algorithm 2 LONSA-MANY(P, array𝑥 , array𝑦)

Require: P = {𝑠1, 𝑠2, . . . , 𝑠𝑁 }: points in𝑀-dimensional space

Ensure: F = {𝐹1, 𝐹2, . . .}: points from P split into fronts

1: for each 𝑠 ∈ array𝑥 do
2: label(𝑠) ← #1

3: for each 𝑠 ∈ array𝑥 do
4: if label(𝑠) = #1 then
5: label(𝑠) ← #2

6: pos𝑦 ← Find𝑦 (𝑠) ⊲ Obtain the position of 𝑠 in array𝑦
7: while pos𝑦 < |array𝑦 | do
8: if label(array𝑦 [pos𝑦]) ≠ #3 then
9: if 𝑠 ≺ array𝑦 [pos𝑦] then
10: label(array𝑦 [pos𝑦]) ← #3

11: else if array𝑦 [pos𝑦] ≺ 𝑠 then
12: label(array𝑦 [pos𝑦]) ← #3

13: break
14: pos𝑦 ← pos𝑦 + 1
15: 𝐹 ← ∅
16: for each 𝑠 ∈ array𝑥 do
17: if label(𝑠) = #2 then
18: P← P \ {𝑠}
19: 𝐹 ← 𝐹 ∪ {𝑠}
20: Remove 𝑠 from array𝑥
21: Remove 𝑠 from array𝑦

22: return 𝐹

front. The points are checked one by one in the order specified by

array𝑥 . Once a point 𝑠 with a label #1 is found, its index pos𝑦 is

found in array𝑦 , and only the points that follow 𝑠 in that array are

checked for dominance with 𝑠 . Points dominated by 𝑠 are labeled

as #3 and effectively ignored on the current iteration. If 𝑠 is itself

found to be dominated, it is also labeled as #3, but in this case the

loop ends, and the process continues with the next point. If the

point 𝑠 survived for the whole loop, it is marked #2. It has chances

to enter the current front now, but in fact, as some points have not

yet been compared with 𝑠 at this time, but may do in the future, it

can be labeled #3 later.

Once all points have been processed, those labeled #2 constitute

the current front, hence they are removed from array𝑥 and array𝑦 .

2 ANALYSIS
First of all, we have to note that our presentation of this algorithm

assumes, for clarity and efficiency, that the labels are stored together

with the other point data, and not along the arrays array𝑥 and

array𝑦 , as the original pseudocode from [1] can be interpreted.

This, in particular, avoids certain lookup procedures characteristic

to the original pseudocode. It is also not clear how [1] implements

the procedure Find𝑦 which finds the index of a point in array𝑦 : if
such a procedure is implemented using the hash table, as claimed,

then each removal of a point from array𝑦 shall result in an update

of Θ(𝑛) entries of that hash table on average. For our analysis we

optimistically assume that both Find𝑦 and removal of a point from

an array take 𝑂 (1) time.

Second, an important observation about LONSA is that, accord-

ing to [1], the points are sorted by the first and the second objectives,

to obtain array𝑥 and array𝑦 correspondingly, while essentially

ignoring third and all higher objectives. For this reason, we consider

the case where the values of the first objective are the same across

all the points, and the same property holds for the second objective.

In this case, LONSA does not reorder the supplied points, so the

values of all the objectives can be arbitrary.

Under the assumption above, the indices of every point in arrays

array𝑥 and array𝑦 coincide, and LONSA behaves in objectives

[3..𝑀] exactly like another non-dominated sorting algorithm, De-

ductive Sort [3]. For this algorithm, the inputs of size 𝑁 exist, as

shown in a recent paper [4], for any number of objectives𝑀 ′ ≥ 2

which makes it perform Θ(𝑁 3) dominance comparisons, where

each of the comparisons can be further forced to require Θ(𝑀)
time to determine the dominance relation. Hence Deductive Sort

has the worst-case running time of Θ(𝑀𝑁 3). For the reasons ex-
plained above, LONSA will also require at least the same time if

one prepends two equal objective values to each point from such

an input. Hence, the worst-case time complexity of LONSA is also

Θ(𝑀𝑁 3). This disproves the claim of the authors of LONSA about

having 𝑂 (𝑁 2) dominance comparisons in the worst case, which

they made in [1, Section 3.3].

3 CONCLUSION
We presented a short proof that LONSA, a recently proposed al-

gorithm for non-dominated sorting, has the worst-case running

time of Θ(𝑀𝑁 3). Our proof used a deficiency in this algorithm:

whenever the first two objectives of all points are the same, it de-

generates into another algorithm, Deductive Sort, which is, in turn,

possible to force into Θ(𝑁 3) dominance comparisons.

With this small paper, we once more remind that those claims

about the performance of the algorithms, which can be easily vali-

dated or disproved, shall be proven, not just stated as the authors

of LONSA did in their complexity analysis.

ACKNOWLEDGMENTS
This work is partially financially supported by National Center for

Cognitive Research of ITMO University.

REFERENCES
[1] Rafael Frederico Alexandre, Carlos Henrique Nogueira de Resende Barbosa, and

João Antônio de Vasconcelos. 2018. LONSA: A Labeling-Oriented Non-Dominated

Sorting Algorithm for Evolutionary Many-Objective Optimization. Swarm and
Evolutionary Computation 38 (2018), 275–286.

[2] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and T. Meyarivan. 2002. A Fast

and Elitist Multiobjective Genetic Algorithm: NSGA-II. IEEE Transactions on
Evolutionary Computation 6, 2 (April 2002), 182–197.

[3] Kent McClymont and Ed Keedwell. 2012. Deductive Sort and Climbing Sort: New

Methods for Non-Dominated Sorting. Evolutionary Computation 20, 1 (Spring

2012), 1–26.

[4] Sumit Mishra and Maxim Buzdalov. 2020. If Unsure, Shuffle: Deductive Sort is

Θ(𝑀𝑁 3) , but O(𝑀𝑁 2) in Expectation over Input Permutations. In Proceedings
of Genetic and Evolutionary Computation Conference (GECCO’2020). 516–523.

[5] N. Srinivas and Kalyanmoy Deb. 1994. Multiobjective Optimization Using Non-

dominated Sorting in Genetic Algorithms. Evolutionary Computation 2, 3 (Fall

1994), 221–248.

[6] Sorrachai Yingchareonthawornchai, Proteek Chandan Roy, Bundit Laekhanukit,

Eric Torng, and Kalyanmoy Deb. 2020. Worst-case conditional hardness and

fast algorithms with random inputs for non-dominated sorting. In Proceedings of
Genetic and Evolutionary Computation Conference Companion. ACM, 185–186.

190

	Abstract
	1 Introduction
	2 Analysis
	3 Conclusion
	Acknowledgments
	References

