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Abstract
Competitive coevolution is an important technique for fields

such as defense and security which inherently involve adversarial
games. One advantage that the field of computer security has in
particular is that games in this space are often naturally able to be
simulated at a high fidelity by interacting with the involved soft-
ware or hardware directly. However, such high-fidelity evaluations
are typically slow, so it is especially important in these cases to get
as much useful information out of as few evaluations as possible.
This paper proposes a new competitive coevolutionary evaluation
method of Similar-Strength Opponent Sampling, which selects op-
ponent pairings of similar skill levels so that evaluations can more
efficiently distinguish the performances of similar individuals. This
is enabled through the use of Elo ratings as a surrogate fitness
function that prevents bias against individuals assigned stronger
opponents. Care is taken to ensure that this technique is applica-
ble to complex games where there is no explicit winner or loser,
allowing ratings to be based on relative fitness. Mixed results are
presented, showing that significant benefits are gained from pairing
similar-strength opponents, but finding that the use of Elo rating
instead of raw fitness harms evolution for intransitive games.
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• Computing methodologies → Genetic algorithms; Ad-

versarial learning; •Theory of computation→ Evolutionary
algorithms.
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1 Introduction
Competitive coevolution is a natural technique to apply to the ad-

versarial games commonly found in defense and security, in which
real-world attackers and defenders are constantly improving their
technical and strategic capabilities in order to gain supremacy over
their opponents. Much existing research has found great success
by employing competitive coevolutionary algorithms on these sce-
narios [11, 20, 25]. When applying this to cyber-security games,
practitioners additionally have the extremely powerful option of
evaluating their evolved strategies directly against a high-fidelity
representation of their real-world use case, by the nature of such
problems typically consisting of software or hardware which evolu-
tionary algorithms can interface with. When using these methods
for evolution, evolved strategies can be expected to be much more
applicable to the real world than those evolved for a hand-designed
simulation which might be missing subtle but important details that
affect performance. Existing work has explored the effectiveness
of this methodology [9, 14, 28], but a typical downside noted is
the greatly increased wall time cost of running evaluations in real
hardware or software, since unlike in a simulation such an environ-
ment can not easily be sped up past real-time [27]. It is therefore
particularly important to develop ways to speed up competitive
coevolution for this category of games in order to enable better use
of such high-fidelity evaluation tools.

One of the primary difficulties encountered in competitive co-
evolutionary algorithms is determining solution quality. Since there
is generally no exact fitness function to score an individual, fitness
must be measured using the relative performance of opponents
competing in the same environment. While the hypothetical ideal
is to evaluate each individual against all possible opponents, such
an approach is rarely feasible. Instead, individuals are evaluated
against a small subset of theoretical opponents through competi-
tive coevolution. Even then, a full round-robin comparison of an
individual to the entire population of opponents is extremely costly,
meaning that individuals are usually only tested against a very
small number of opponents. Each opponent that an individual is
evaluated against further improves the fidelity of the calculated
fitness, but the expense in computation increases as well. Meth-
ods of increasing fidelity in fitness while minimizing the impact to
computation time are particularly valuable. A variety of different
methods have been developed to improve the running time of com-
petitive coevolution, such as surrogate fitness functions or fitness
estimation techniques that take advantage of expected transitivity
in competitive outcomes, as well as the use of more sophisticated
methods of evaluation than random opponent sampling.
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This paper introduces a novel method of sampling opponents
by pairing solutions with opponents found to have similar perfor-
mance in past evaluations (Similar-Strength Opponent Sampling, or
SSOS). This technique is intended to reduce the number of needed
evaluations per generation of evolution by using more intelligent
pairing of opponents to more efficiently distinguish individuals of
similar skill level. We hypothesize that by preferentially comparing
individuals that are similar in ability, more useful information about
their quality can be obtained per evaluation than would be obtained
by random sampling, which often pairs individuals against oppo-
nents for whom the outcome of their competition is a foregone
conclusion based on previous evaluations. However, similarity in
capability can not be assumed from similarity in fitness, because
the fact that strong individuals are being tested against strong op-
ponents means that their fitnesses will be artificially low, and the
fitnesses of weak individuals against weak opponents artificially
high. To remedy this we propose the application of the Elo rating
system [6], a method which rates the skill of competing players
such that the difference in rating between two players predicts the
expected score achieved in competition between the two, and uses
observed deviation from these expected scores to update its ratings.
The Elo rating becomes a surrogate fitness function for evolution,
resulting in a combined method of Elo-Based Similar-Strength Op-
ponent Sampling (EBSSOS).

Many of the design decisions made as part of this research are
motivated in particular by the game-theoretic nature of security and
defense scenarios: such games are frequently asymmetric, non-zero-
sum, and multiobjective, and most existing work is incapable of
simultaneously handling these complications. For example, defend-
ers typically have priorities beyond thwarting potential attackers,
such as maintaining usability of their systems or minimizing cost; a
heavy-handed defense that disables all functionality might success-
fully thwart attacks, but is generally not an acceptable option. Since
many attacker missions are not aimed at degrading those objectives,
this results in an asymmetric, non-zero-sum, multiobjective game
that presents complications for algorithm design and means that
many existing methods of speeding up competitive coevolution-
ary algorithms can not be directly applied to security and defense
games. The specific formulation of the Similar-Strength Opponent
Sampling algorithm presented in this paper concerns zero-sum,
single objective games, but is designed to be extensible to these
non-zero-sum, multiobjective environments [10].

2 Background
Here we describe the mathematics of the Elo rating system and

the problem domains used to evaluate EBSSOS in this paper.

2.1 Elo Rating System
The Elo rating system was originally developed by Arpad Elo

[6] for rating the skill level of chess players based on the outcome
of their games against other players. The premise of the Elo rating
system is that, given the skill ratings of two players, one can calcu-
late the expected score of a game between the two. When the actual
result of a game deviates from the expected score, it is then possible
to update those players’ ratings to account for this. Elo ratings most
commonly use the base

√
10 logistic function to model the expected

score 𝑃 (𝐷) given a rating difference of 𝐷 , defined by the following

function1, where expected score is normalized to [0, 1]:

𝑃 (𝐷) = 1
1 + 10−𝐷/(2·200)

(1)

In games like chess which lack score as a gameplay element, the
score values of 1 for a win, 12 for a draw, and 0 for a loss are con-
ventionally assigned. Through this, larger differences in rating are
expected to produce larger differences in score. To update ratings,
Elo gives the equation:

𝑅𝑛 = 𝑅𝑜 + 𝐾 (𝑊 −𝑊𝑒 ) (2)
where 𝑅𝑜 and 𝑅𝑛 are the old and new Elo ratings,𝑊 and𝑊𝑒 are the
actual and expected game scores, and𝐾 is a learning rate parameter
called the K-factor, representing how much each update should
affect the ratings (and the maximum possible update). Reasonable
K-factors vary depending on application, but values of 10 to 32
are common in chess. Often, different categories of players are
given different K-factors, depending on how quickly their ratings
or actual skills are expected to change.

Elo additionally provides an algorithm to calculate ratings for
a group of unrated players, which he refers to as “the method of
successive approximations”. This algorithm can work to statically
calculate a rating given a series of past games. The premise of this
method is that, in the same way that the logistic function can be
used to estimate an expected score given a rating difference, the
inverse logistic function (sometimes called the logit function) can
be used to estimate an expected rating difference given a score. The
inverse of the above logistic function is defined by the function:

𝐷 (𝑃) = 200 · log√10 (
𝑃

1 − 𝑃 ) (3)

Given a previous rating estimate for the population, each individ-
ual’s rating estimate can be updated by the following:

𝑅𝑝 = 𝑅𝑐 + 𝐷 (𝑃) (4)
where 𝑅𝑝 is the new rating estimate, 𝑅𝑐 is the average of the rating
estimates of all that individual’s opponents, and 𝑃 is the average of
the normalized scores that individual has achieved. Notably, this
method eliminates the sensitive K-factor parameter, since player
skill is assumed to be static. During experiments we found that
these successive approximations will diverge given the low number
of games provided per generation, so we modify Equation 4 to:

𝑅𝑝 = 𝛾 · 𝑅𝑐 + 𝐷 (𝑃) (5)
where 𝛾 is a decay value close to 1. These iterative updates are
repeated until the average change in ratings between iterations is
below a given convergence threshold. Through parameter tuning
we found that a𝛾 of 0.9 and a convergence threshold of 0.1 produced
stable ratings after relatively few iterations. An initial rating of 0
is used so that calculated ratings will be centered around zero.
Algorithm 1 gives a more detailed overview of this process.

2.2 Problem Domains
To evaluate the performance of EBSSOS, this work uses three

problem domains with differing complexity, including two prob-
lems commonly used in prior research on methods of sampling
opponents. Our problem domains are a Predator-Prey game with a

1The value 200 here is the scale of the curve, originally chosen based on pre-Elo chess
tradition separating different “classes” of players into 200-point rating bands. It is
typically re-used in other non-chess applications of the Elo rating system.
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Algorithm 1:Method of successive approximations
Input: 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛, 𝑜𝑝𝑝𝑜𝑛𝑒𝑛𝑡𝑠 [], 𝑠𝑐𝑜𝑟𝑒𝑠 [] [],

𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 , 𝛾 , 𝐷𝑝𝑒𝑟 𝑓 𝑒𝑐𝑡

Output: 𝑅𝑝 []
Set all initial ratings 𝑅𝑝 [𝑖] ← 0;
repeat

forall 𝑖 in 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 do
𝑅𝑐 [𝑖] ← 𝑎𝑣𝑔(𝑅𝑝 [ 𝑗]) for 𝑗 in 𝑜𝑝𝑝𝑜𝑛𝑒𝑛𝑡𝑠 [𝑖];
𝑃 ← 𝑎𝑣𝑔(𝑠𝑐𝑜𝑟𝑒𝑠 [𝑖] [ 𝑗]) for 𝑗 in 𝑜𝑝𝑝𝑜𝑛𝑒𝑛𝑡𝑠 [𝑖];
if 𝑃 = 0 then

𝐷 ← −𝐷𝑝𝑒𝑟 𝑓 𝑒𝑐𝑡 ;
else if 𝑃 = 1 then

𝐷 ← 𝐷𝑝𝑒𝑟 𝑓 𝑒𝑐𝑡 ;
else

𝑅𝑛𝑒𝑥𝑡 [𝑖] ← 𝛾 · 𝑅𝑐 + 200 · log√10 (
𝑃

1−𝑃 );
end

end
𝑅𝑙𝑎𝑠𝑡 ← 𝑅𝑝 ;
𝑅𝑝 ← 𝑅𝑛𝑒𝑥𝑡 ;
if first round of evaluations then

return 𝑅𝑝 ;
end

until 𝐴𝑣𝑔( |𝑅𝑝 [𝑖] − 𝑅𝑙𝑎𝑠𝑡 [𝑖] |) < 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 for 𝑖
in 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛;
return 𝑅𝑝 ;

continuous action space and genetic programming-based agents,
the simpler game of Nim with a small, discrete action space and
binary genotypes, and the even simpler transitive “game” described
by the Internal Rosenbrock domain, in which opponents are simply
competing minimizations to the Rosenbrock function.

2.2.1 Predator-Prey We examine a two-agent Predator-Prey envi-
ronment, in which a predator agent is tasked with maneuvering to
intercept a prey agent, who’s goal is to evade the predator. Predator-
Prey scenarios (also referred to as pursuit-evasion games) are com-
mon domains for testing competitive coevolutionary algorithms,
due to the complexity of available behaviors despite their simplicity.
One of the first applications of these games to study competitive
coevolution was by Reynolds [22], who framed it as a game of tag
where agents switched roles upon capture. This environment was
used as a testbed for exploring the competitive coevolution of agent
behavior. Cliff and Miller [3] similarly used neuroevolution in a
two-population pursuit environment to explore difficulties inherent
to competitive coevolution. Pursuit-evasion games have been more
broadly studied in the field of differential games, with foundational
work by Rufus Isaacs [12].

Two differing formats of Predator-Prey environments are com-
mon in past research. Especially associated with the “pursuit-
evasion” descriptor are unbounded environments, in which the
predator and prey can move indefinitely in any direction. Gener-
ally in these scenarios the predator is faster than the prey, so that
fleeing in a straight line is not a dominant prey strategy. Alterna-
tively, bounded environments in which the predator and prey are
restricted to a finite area are common. Here, the predator need not

Figure 1: A game in the Predator-Prey domain demonstrat-
ing common strategies, with the predator in red and the
prey in green. The prey escapes from the predator by mov-
ing along the outside edge of the world, while the predator
tries to cut across the center to catch it. The prey zig-zags
repeatedly in a behavior evolved to confuse the predator’s
predictive movements, causing the predator to move errati-
cally and avoiding capture.

be faster than the prey, because prey agents are forced to circle
back when they reach the edge of the environment. Even a predator
who is significantly slower than the prey can still utilize a strong
strategy to intercept a prey agent by using a shorter route.

The environment used in the following experiments takes the
second format, using a circular area to ensure symmetry and lack
of corners. Predator and prey agents move simultaneously at fixed
speeds, and are controlled by selecting an angle to move for each
timestep. The agents’ bodies are circles with a given radius; if the
predator and prey circles overlap each other, the scenario ends. The
scenario also ends if the prey evades capture past a set time limit. If
an agent attempts to make a move outside the edge, its destination
is projected towards the center of the world to the nearest valid
location. Agents start at opposite sides of the world, half-way to the
edge. In particular, the predator/prey speed ratio of 0.06 to 0.10 was
tuned in order to produce the best coevolutionary results. With our
implementation, a predator speed of 0.05 typically resulted in the
eventual emergence of extremely dominant prey, and a predator
speed of 0.07 typically prevented the prey from gaining a foothold
at all. We use a world radius of 1.0, an agent radius of 0.1, and a
time limit of 200 steps. Fitness is zero-sum, given by the number
of time steps survived for the prey, or the number of time steps
remaining after the prey is captured for the predator (zero if the
predator fails entirely). Figure 1 shows the results of an example
Predator-Prey game.

2.2.2 Nim Rosin and Belew [24] provide a simple genetic algo-
rithm implementation for playing the game of Nim, inwhich players
are given one or more piles of stones, and must take turns removing
one, two, or three stones from a pile until none remain, where the
player who takes the last stone is the winner. Their work and most
others using this implementation select pile sizes of [3, 4, 5, 4]. A
strategy for playing this game is encoded as a list of binary values
each associated with a specific game state, representing whether
that state is desirable or not. In a given state, players will enumerate
valid moves, and take the first move that leads to a desired state, or
the first in the list if there are no such moves. For an initial state of
[3, 4, 5, 4], the size of the genome is 599, for the 599 possible states
that can be reached from that initial state (excluding the initial
state itself). Usage of this game and implementation to compare
competitive coevolutionary algorithms is widespread [13, 15, 21].
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2.2.3 Internal Rosenbrock Panait and Luke [21] use a competitive
“game” based on the Rosenbrock function, commonly used to evalu-
ate evolutionary algorithms. The two players in the Internal Rosen-
brock game are real-valued vectors attempting to minimize the
100-dimensional Rosenbrock function, and fitness is simply based
on the difference between the output values for the two players,
scaled to [-1, 1]. This game has two main advantages in evaluating
the behavior of a competitive coevolutionary algorithm: it has a
known “true” fitness for every individual to compare against, which
is uncommon in competitive problems, and it is clearly a transitive
game, which is a best-case scenario for many methods of evalu-
ating competitive populations. In particular, Elo rating assumes
that player skills are transitive, and though it is frequently used
for games with some amount of intransitivity such as chess, it is
expected to perform better on a transitive game. This problem was
also used by Jaśkowski et al. [13] to evaluate their fitnessless co-
evolution. As in the original description, we use a 100-dimensional
function with parameters in the domain [-5.12, 5.12].

3 Related Work
The Elo rating system is well-known as a result of its adoption

by chess and subsequently many other game communities, so it is
frequently adopted throughout the field of artificial intelligence to
measure the performance of agents against each other. Samothrakis
et al. [26] examine the behavior of two derivatives of the Elo rating
system, BayesElo [5] and Glicko [7] and the ways these can be used
to effectively evaluate competing AI agents, finding that Glicko
ratings are particularly quick to reach accurate predictions with
only a fraction of possible round-robin pairings available, though
noting possible representation issues with intransitive strategies.
The difficulties of intransitivity to competitive coevolution and
rating systems is studied further by Richter [23], who introduces a
variety of numerical measurements of intransitivity and its effects.

Less frequently, Elo rating has been applied directly to compet-
itive coevolutionary algorithms as a fitness metric. Wijngaarden
and Jong [29] compare several different evaluation methods in-
cluding Elo and Glicko ratings as fitness functions for competitive
coevolutionary algorithms under different algorithmic configura-
tions. They do not find any consistent benefit from using these
ratings directly as fitness measures, but discuss their relationships
with intransitivity in competitive coevolution, and how intransi-
tivity can harm coevolutionary growth, recommending the use of
crowding-based phenotypic diversity preservation to prevent such
intransitivity from causing coevolutionary failure. Cotton et al. [4]
obtained strong results from using Elo rating as a fitness measure
for a hybrid of competitive coevolutionary algorithms and gradient
descent-based deep reinforcement learning, finding that the use of
Elo rating as a surrogate fitness measure outperformed the direct
use of training rewards. These works only use Elo rating as fitness,
rather than using it to manipulate opponent sampling as in EBSSOS.

Liskowski and Jaśkowski [17] give an alternative surrogate fit-
ness method for competitive coevolution with their Matrix Factor-
ization-based Interaction Scheme. Opponents in this scheme are
selected through 𝐾-random sampling, but the results of these eval-
uations are then used to estimate the relationships between other
pairs of individuals through factorization of the interaction matrix.

This method is commonly used in machine learning to fill gaps in
sparse matrices for which only a small fraction of the elements are
known. This method produced comparable results to a round-robin
tournament in generating position evaluating agents for the game
of Othello, with significantly less runtime. While this work only
uses K-random sampling, its methods could plausibly be used as an
alternative to Elo rating for SSOS.

While random sampling of opponents for competitive coevolu-
tionary algorithms is the most common approach, more sophis-
ticated methods of opponent sampling and evaluation have also
been studied. Rosin and Belew [24] introduce the technique of
shared sampling, which aims to provide a strong, diverse teach-
ing set that overall is challenging to the whole population. This is
done by assigning bounties to each individual which are shared
between all the opponents who succeeded against that individual,
thus favoring opponents that provided more unique counters to
otherwise undefeated strategies. The authors find sharply better
performance with this shared sampling method over simpler meth-
ods of opponent sampling. Panait and Luke [21] perform a variety of
experiments comparing the use of single-elimination tournaments
(previously introduced by Angeline and Pollack [1]) to random
opponent sampling. They find that single-elimination tournaments
perform advantageously under many circumstances, and are partic-
ularly effective at certain games such as one particular formulation
of Nim, but are susceptible to noise in fitness evaluations. Tour-
naments also have the disadvantages of strongly relying on the
assumption of transitivity in the tournament results, even more so
than rating systems like Elo. Kim et al. [15] propose a more complex
tournament structure called Entry Fee Exchange Tournament Com-
petition. Here, individuals are assigned a uniform initial fitness, and
then random pairs of individuals are selected to compete, where the
winner steals a percentage of their opponent’s fitness (the “entry
fee”), and the loser is eliminated from the tournament, becoming
no longer eligible to compete. This technique was found to produce
similar-quality strategies to shared sampling on several games, but
with better runtime and speed of evolution. Despite the success
of these methods, they rely on the assumption that interactions
between competitive agents result in a well-defined winner and
loser, which is not true in general. As a result, there is a need for
the development of opponent sampling techniques which are more
applicable to these domains.

4 Methodology
The overall algorithm of EBSSOS consists of the following steps:
(1) For each population, construct a list of the current individuals

from that population plus that population’s hall of fame.
(2) Randomly pair each individual with an opponent2, avoiding

repeated pairings. Skip to Step 5 for initial evaluations, as
no Elo ratings have been calculated yet.

(3) Randomly swap the opponents of two individuals, reverting
this if the squared difference in Elo ratings within the two
new opponent pairings is greater than the squared difference
in Elo ratings within the two old opponent pairings.

2For single-population competitive coevolution, these pairings are against opponents
within the same population. For more than two populations, these “pairings” are
instead tuples of opponents.
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(4) Repeat the previous step until no improvements have oc-
curred for 200 (see Section 4.1) attempted swaps.

(5) Run evaluations for all pairings and record the resulting
evaluation fitnesses.

(6) Calculate new Elo ratings for the population using Algo-
rithm 1.

(7) Return to Step 2 and repeat until the desired number of
evaluations per individual have been performed.

(8) Record the Elo rating for each individual as its final fitness.

Evaluations are performed in rounds, where every individual
is assigned one opponent (or as few as possible such that every
individual has at least one opponent). After a round of evaluations
has been completed, the recorded evaluation fitnesses are normal-
ized to [0, 1] on the range of minimum and maximum values yet
observed3. From these values, their Elo ratings can be calculated
statically through the method of successive approximations (Al-
gorithm 1). The static Elo rating is recalculated from scratch after
each round of evaluations using this method.

4.1 Opponent Selection
In order to make the best use of evaluations, opponent pairs

are chosen such that individuals are evaluated against opponents
which are close in skill, maximizing the information gain from
evaluation. The goal is to minimize the sum of squared distances in
Elo ratings between paired individuals. As every individual needs
an opponent, this becomes an instance of the Assignment Problem,
the problem of selecting disjoint pairs in a weighted bipartite graph
to minimize total cost. Existing exact algorithms for solving this
problem, such as the Hungarian Method [16], were found to be too
costly for large population sizes. An inexpensive hill-climber was
used instead and exhibited comparable effectiveness in minimizing
distance. A hill-climber for this problem starts by randomly pairing
individuals with opponents who they have not yet been evaluated
against while minimizing pairings per individual. Hill-climbing
then repeatedly selects two individuals, exchanges their opponents,
and keeps this new pairing if the new opponents do not increase the
sum of squared Elo distances. Termination occurs after a set number
of iterations pass without decreasing the sum of squared distances.
Higher values for this iteration limit produce more accurate results,
but we found that for our population sizes a value of 200 iterations
produced the best trade-off of quality to speed.

This process is repeated over several rounds, evaluating agents
against a new opponent each round who is close to them in Elo
rating. Their ratings are adjusted based on the result of these evalua-
tions, providing information not only on their performance against
their opponent as in a standard competitive coevolutionary algo-
rithm, but also information on their theoretical performance against
other agents, due to the transitive relationships encoded in their
opponent’s Elo rating from past evaluations. We hypothesize that
this will decrease the amount of evaluations necessary to achieve
healthy coevolution.

3We do not recommend normalizing to theoretical maximum and minimum values,
because if these values do not occur in earlier generations, it might result in one
population’s ratings being extremely high or low compared to their opponents, greatly
limiting the feasibility of pairing individuals with opponents of similar ratings.

Number of parents (𝜇) 50
Number of children (𝜆) 150
Generations 50
Mutation rate 50%
GP: Tree initialization Ramped half-and-half
GP: Initial tree size 3-7
Nim: Gene mutation chance 10%
Rosenbrock: Gene mutation chance 33%
Rosenbrock: Mutation amount Gaussian, 𝜎 = 0.1024

Table 1: Evolutionary parameters

4.2 Hall of Fame
Cycling was found to be a problem in experiments in the

Predator-Prey domain, as predators and prey would commonly
over-fit to contemporary opponents, rather than providing agents
that are strong in general. Fortunately, EBSSOS very easily allows
for the addition of a hall of fame. The hall of fame is an evolutionary
archive which stores strong individuals from previous generations,
first described by Rosin and Belew [24]. The purpose of the hall
of fame is to ensure that new individuals maintain the ability to
counter old strategies no longer used by extant populations. In
these experiments, a population’s highest-rated individual is added
to its hall of fame after each generation. This hall of fame is then
appended to the current population during evaluation. Members of
the hall of fame which are found to beat current strategies will have
their ratings increase, ensuring that high-ranking individuals will
need to defend their rating against them. In contrast, an otherwise
unremarkable individual which is able to counter a strategy in the
hall of fame that few others can will be rewarded.

5 Experiment Design
Agents are evolved using the parameters listed in Table 1. The

remainder of this section discusses the design of genetic program-
ming agents for the Predator-Prey domain, and the methodology
we use to compare the performance of two competitive coevolu-
tionary algorithms. For the Nim and Internal Rosenbrock domains,
we use the agent design given by Rosin and Belew [24] and Panait
and Luke [21] respectively.

5.1 Predator-Prey Agents
Predator and prey agents are structured as genetic programming

parse trees returning an angle to move at each timestep, using
strongly-typed genetic programming [18]. The primitive set for
these trees uses angle types and distance types. Table 2 provides
a list of genetic programming primitives used in this experiment.
The set of genetic programming primitives used here were chosen
to enable agents to respond to their absolute location in the world,
and to their location relative to their opponent. Angle data types
are eventually combined to produce the final angle (frequently
using 𝑎𝑣𝑒𝑟𝑎𝑔𝑒_𝑎𝑛𝑔𝑙𝑒𝑠), with distance data types being secondary,
eventually used for either scalar multiplication of an angle (using
𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑦_𝑎𝑛𝑔𝑙𝑒) or to enable conditional behavior when near the
opponent (using 𝑖 𝑓 _𝑔𝑟𝑒𝑎𝑡𝑒𝑟_𝑡ℎ𝑎𝑛). Of particular note is the pres-
ence of the 𝑙𝑎𝑠𝑡_𝑚𝑜𝑣𝑒 and 𝑜𝑝𝑝𝑜𝑛𝑒𝑛𝑡_𝑙𝑎𝑠𝑡_𝑚𝑜𝑣𝑒 nodes, which allow
agents to respond to their own behavior, or the opponent’s behavior.
Because 𝑜𝑝𝑝𝑜𝑛𝑒𝑛𝑡_𝑙𝑎𝑠𝑡_𝑚𝑜𝑣𝑒 allows predators to move to predict
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the prey’s future location, prey agents often evolve zigzag strategies
which thwart prediction.

5.2 Comparison Methodology
To compare the performance of two configurations of a com-

petitive coevolutionary algorithm, a statistical test is needed to
determine if the solutions produced by a run of one configura-
tion are, on average, “better” than those produced by the other.
Given only one run of each configuration, we can determine (in a
non-statistically-rigorous manner) which has the highest-quality
solutions by running a round-robin tournament of the top 𝑘 in-
dividuals produced by each population of each run, to calculate
average fitness scores relative to their rivals from the other run.
These two runs are then each scored by the fraction of their own
individuals in the top 50% for each population. We use 𝑘 = 10, as 𝑘
should represent a broad set of individual strategies, but shouldn’t
be so high as to make a round-robin tournament prohibitive or so
low as to include low-quality mutants from the final generation.
Performing a statistical test needs a large number of runs as sam-
ples to compare, in order to infer the behavior of an average run.
We perform 100 runs of each algorithm. Then, each run from the
first configuration can be compared against each run in the second
configuration using the above methodology, and their resulting
scores summed per-run. The resulting value is that run’s average
share of top solutions relative to runs from the other configuration.
A two-tailed F-test and t-test are then be used to measure whether
one configuration produces a significantly higher average share of
top solutions in comparisons against the other configuration.

6 Analysis of Elo Rating Convergence
A major drawback of the Elo rating system is that its ratings will

be inaccurate until a sufficient number of games have been played
for them to stabilize. In order for evolution based on these ratings
as fitness values to perform well, the amount of noise that they
contain should be limited. Therefore, it is necessary to determine
how many rounds of evaluation are necessary to get useful ratings.
To measure this, we increase the number of pairings per individual
to 20, well above the number of evaluations for which the Elo rating
is expected to converge. The Elo ratings of each individual’s fitness
scores are recorded after every round of evaluation, to show how
they update over time. Since the baseline Elo rating was chosen
as zero, these curves are divided by their mean values to produce
comparable curves which can be averaged together. Additionally,
for each point in time, the coefficient of variation (the ratio of the
standard deviation to the mean) can be calculated for the set of Elo
ratings occuring after that time to measure the stability of the rating
after that many evaluations. These are made positive by taking the
absolute value (in case of negative means), and are also averaged
together. These averaged Elo rating and coefficient of variation
curves can then be used to infer the overall behavior of Elo rating
convergence across several evaluations.

6.1 Results
The convergence properties of 105,294 individuals in the preda-

tor/prey domain were analyzed and are displayed in Figure 2. The
resulting ratings and coefficients of variation show that the Elo
rating converges fairly quickly, with average variation of 2.16 after

Figure 2: Normalized Elo rating at evaluation round 𝑛 and
coefficient of variation from evaluation round 𝑛 onward, av-
eraged across 105,294 individuals.

5 evaluations, 1.12 after 10 evaluations, and 0.65 after 15 evaluations.
The average coefficient of variation for the entire 20-evaluation
life of an individual is 7.01, so even after five evaluations, most
of the instability in Elo rating has stopped. This is promising, as
it indicates that stable Elo ratings can be achieved with very few
evaluations as the rating algorithm quickly infers the relationships
between individuals which have not directly interacted.

7 Analysis of Evolution Quality
In order to evaluate the overall performance of EBSSOS, a series

of experiments are performed comparing EBSSOS with 𝐾 rounds
of evaluations, 𝐾-random opponent sampling, and 𝐾-random op-
ponent sampling with Elo rating as fitness. The presence of this
third intermediate method allows the effects of pairing similar-
performing opponents to be separated from the effects of using
Elo rating instead of raw fitness. Examination of 𝐾 = 5, 10, and 20
allows characterization of whether too few rounds of evaluation
produce a detrimental effect on the usability of the calculated Elo
ratings. Performing the same experiment in the Predator-Prey, Nim,
and Internal Rosenbrock domains allow the evaluation of EBSSOS
and its characteristics in different environments, in order to ensure
that any results in the one domain are not solely due to character-
istics of the design of that game. The Internal Rosenbrock domain
notably has an objective fitness measure, so this can be further used
to analyze whether the surrogate values generated through the Elo
rating system are reflective of true agent skill on this problem.

7.1 Results
As shown in Table 3, EBSSOS (“Paired Elo”) was found to under-

perform random selection of opponent pairs with standard fitness
(“No Elo”). While this result is disappointing, the remaining results
demonstrate that the reasons for this are more complicated than a
simple lack of effectiveness. Compared to runs in which Elo rating
was used as fitness, but pairings were random (“Unpaired Elo”),
“Paired Elo” produced a significant improvement, demonstrating
that the choice to select opponents with similar strength is a sound
one. Comparing the “Unpaired Elo” scenario to “No Elo” illustrates
the true problem: using Elo rating as a surrogate fitness function
noticeably harms evolution, presumably because Elo rating is less
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Primitive Name Output Inputs Description
distance_to_center/edge/opponent Dist. None Distance to the center, edge, or opponent
angle_to_center/opponent Angle None Angle to the center or opponent
last_move/opponent_last_move Angle None Angle of the agent’s or opponent’s last move
distance_literal Dist. None A randomly-initialized distance between 0 and 2
angle_literal Angle None A randomly-initialized angle
flip_angle Angle Angle Adds 180 degrees to the angle
add/subtract_angles Angle Angle, Angle Adds or subtracts two angles
average_angles Angle Angle, Angle Circular average of two angles
multiply_angle Angle Angle, Dist. Multiplies an angle by a distance
add/subtract/multiply/divide_distances Dist. Dist., Dist. Performs arithmetic on two distances
if_greater_than Angle Dist., Dist.,

Angle, Angle
If the first distance is greater than the second, return the first
angle, otherwise return the second angle

Table 2: Genetic programming primitives for both predators and prey

effective as a fitness measure than raw fitness values. When compar-
ing “Paired Elo” against “No Elo”, these two effects occur simultane-
ously, with the harm done by imperfect surrogate fitness canceling
out the gains made from intelligent sampling of opponents. This
distinction is encouraging: Elo rating is not inherently tied to the
methodology of SSOS. Rather, when biasing opponent sampling
based on strength, some unbiased fitness measure is needed to pre-
vent individuals from being punished for facing stronger opponents.
The substitution of another measure instead of Elo rating might
serve as a more accurate surrogate to true fitness, and result in the
positive effects of SSOS overpowering the remaining negatives of
the surrogate fitness measure. The results for comparisons with 5,
10, and 20 opponents sampled per individual were almost identical,
strongly supporting the conclusions of Section 6.1 that Elo rating
converges quickly enough that only five opponents are needed to
get accurate results.

Nim resulted in similar conclusions to the Predator-Prey domain:
“Paired Elo” significantly outperformed “Unpaired Elo”, indicating
that SSOS was effective, but “No Elo” outperformed “Unpaired Elo”,
indicating that the use of Elo rating was harmful. This harm again
was found to cancel out the benefits of pairing similar opponents,
and no significant overall benefit was found from using EBSSOS.
The corroboration of these results with those from the Predator-
Prey domain suggests that the effects observed are not unique to
that domain, but are a more general property of the algorithm.
The differences in performance of resulting strategies between the
different configurations for Nim were much smaller than those for
Predator-Prey. The reasons for this are unclear, but it could be that
the decreased complexity of Nim resulted in smaller differences in
high-performing individuals between different configurations.

The Internal Rosenbrock domain produced very different results
to the other two problem domains. Here, any Elo-based fitness,
whether used for opponent sampling or not, produced a significant
improvement. This is in sharp contrast to the deleterious effects
of Elo rating as a surrogate fitness function observed in the other
two games. It is possible that this is related to the fact that Internal
Rosenbrock is a completely transitive game (as the resulting score is
just the difference in two absolute measures of the competing indi-
viduals). Mathematically, the Elo rating system assumes that player
skill is transitive, despite this not even being true of chess, which

Figure 3: Comparison of fitness scores on the Rosenbrock
problem with competitive Elo rating for 200 agents given
20 opponents each under EBSSOS. The results can be very
cleanly fit with a line.

it was designed for. So while Elo rating may still be effective in
intransitive games, it might inherently perform much better in the
truly transitive Internal Rosenbrock game, allowing for a stronger
estimate of agent skill level than simply averaging fitnesses be-
tween a handful of games. Figure 3 provides a comparison between
the Elo ratings assigned to individuals in the Internal Rosenbrock
domain and their actual objective fitness values. 200 randomly gen-
erated solutions were used, and had their Elo ratings evaluated
over 20 games paired using EBSSOS. On the Internal Rosenbrock
domain, then, it is clear that Elo rating is very closely correlated
with actual agent performance. However, this is likely more true
for this domain than it would be for the Predator-Prey domain or
Nim, due to the perfect transitivity of Internal Rosenbrock.

8 Conclusions
Our experiments as a whole found that Elo-Based Similar-

Strength Opponent Sampling, in its current state, does not provide a
significant benefit to competitive coevolution. However, analysis of
the individual contributing effects to this algorithm’s performance
demonstrates that the principle of Similar-Strength Opponent Sam-
pling is promising, but held back by the use of Elo rating as a
surrogate fitness. While Elo rating, when calculated through the
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Predator-Prey Nim Internal Rosenbrock
Paired Elo vs. Unpaired Elo
5 Opponents per Individual

Means 78.1% vs. 21.9% 53.7% vs. 46.3% 51.5% vs. 48.5%
Best Paired Elo Paired Elo (Inconclusive)

Paired Elo vs. No Elo
5 Opponents per Individual

Means 20.4% vs. 79.6% 49.4% vs. 50.6% 72.0% vs. 28.0%
Best No Elo (Inconclusive) Paired Elo

Unpaired Elo vs. No Elo
5 Opponents per Individual

Means 45.2% vs. 54.8% 47.1% vs. 52.9% 72.1% vs. 27.9%
Best No Elo No Elo Unpaired Elo

Paired Elo vs. Unpaired Elo
10 Opponents per Individual

Means 64.9% vs. 35.1% 52.8% vs. 47.2% 56.1% vs. 43.9%
Best Paired Elo Paired Elo Paired Elo

Paired Elo vs. No Elo
10 Opponents per Individual

Means 45.1% vs. 54.9% 48.4% vs. 51.6% 78.3% vs. 21.7%
Best No Elo (Inconclusive) Paired Elo

Unpaired Elo vs. No Elo
10 Opponents per Individual

Means 36.2% vs. 63.8% 46.2% vs. 53.8% 72.2% vs. 27.8%
Best No Elo No Elo Unpaired Elo

Paired Elo vs. Unpaired Elo
20 Opponents per Individual

Means 64.8% vs. 35.2% 53.5% vs. 46.5% 49.0% vs. 51.0%
Best Paired Elo Paired Elo (Inconclusive)

Paired Elo vs. No Elo
20 Opponents per Individual

Means 42.0% vs. 58.0% 44.5% vs. 55.5% 78.9% vs. 21.1%
Best No Elo No Elo Paired Elo

Unpaired Elo vs. No Elo
20 Opponents per Individual

Means 34.6% vs. 65.4% 42.4% vs. 57.6% 78.8% vs. 21.2%
Best No Elo No Elo Unpaired Elo

Table 3: Experimental results for the experiments described in Section 7, displaying the average fraction of dominant strategies
in pairwise comparisons. Statistically significant results are shown in bold (p < 0.05).

method of successive approximations, converges to stable values
relatively quickly, it appears that the assumed transitive structure
of the Elo rating system is not sufficiently representative of the
actual relationships between relative agent performances, as only
on the intransitive Internal Rosenbrock game was the use of Elo
rating not harmful. Importantly, SSOS isn’t reliant upon Elo rating
specifically, it only needs a method of scoring individuals based
upon the outcome of games against a non-representative sample of
the opponent population. As a result, other representations besides
Elo rating might result in a stronger positive effect by reducing
the negative side effects associated with the use of Elo rating. On
the Internal Rosenbrock domain, which matches the assumptions
inherent in Elo rating better than the other two games, the use of
Elo rating alone provided a strong improvement to coevolutionary
performance, so it’s possible that using a rating system or other
method which more effectively models the relationships between
different strategies in complex games might result in a direct im-
provement in coevolution, rather than harming it.

9 Future Work
While Elo rating is a well-known and easily implementedmethod

of estimating individual skill, it has a number of shortcomings
impacting its application in competitive coevolutionary algorithms.
Primarily, Elo ratings take time to converge, and they don’t model
intransitive structures in the strategy space. A number of different
rating methodologies have been proposed since the introduction of
Elo, many of which are intended to outperform Elo in addressing
these issues. Further investigation, then, should focus on these
alternative rating methodologies as potential ways to maintain the
benefits of SSOS while reducing the negative effects of using Elo
rating as a surrogate fitness. Our experiments found that Elo ratings
tended to converge to stable values within five to ten rounds of

evaluations, which is not prohibitively expensive to compute, but is
more than would be ideal. Additionally, until that point, the interim
Elo ratings can vary wildly and be extremely inaccurate, which
limits the effectiveness of SSOS, since Elo is not accurately reporting
which agents have similar strengths. BayesElo [5] is an extension
to Elo ratings which uses Bayesian statistics to limit the extreme
variation in ratings for agents who have few evaluations to work
off of. Similarly, the Glicko [7] rating system functions similarly
to Elo ratings, but includes a secondary “ratings deviation” rating
representing the expected accuracy of their rating, and an additional
rating volatility measure added in Glicko-2 [8]. Samothrakis et
al. [26] suggest that these algorithms, Glicko in particular, have
desirable properties of quick convergence to accurate predictions.

Another issue with not only Elo, but most rating systems, is that
they treat skill levels as transitive. If agent A usually beats agent B,
and agent B usually beats agent C, then A will be expected to beat
C. This is not always the case, however, as strategies often domi-
nate each other cyclically, in a “rock-paper-scissors” relationship.
Fortunately, some works have proposed modifications to Elo and
similar rating systems that would allow them to represent intran-
sitive relationships. Balduzzi et al. [2] introduce a rating system
called Multidimensional Elo, in which the Elo rating is augmented
by a multidimensional vector updated with an approximation of
cyclic properties of the agent’s interactions. A much more complex
methodology, 𝛼-Rank [19], developed by Omidshafiei et al., gives a
novel ranking system based on Markov chains and game-theoretic
evolutionary dynamics which is designed specifically for the rank-
ing of AI agents, applicable to highly intransitive and asymmetric
games. While more complex than other methods, the authors sug-
gest that this ranking system is computationally simple enough
that it can be used directly in the training of agents, which makes
it a good candidate for this application.
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