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ABSTRACT
We demonstrate an innovative framework (CoEvSoarRL) that lever-
ages machine learning algorithms to optimize and simulate a re-
silient and agile logistics enterprise to improve the readiness and
sustainment, as well as reduce the operational risk. The CoEv-
SoarRL is an asymmetrical wargame simulation that leverages re-
inforcement learning and coevolutionary algorithms to improve
the functions of a total logistics enterprise value chain. We address
two of the key challenges: (1) the need to apply holistic predic-
tion, optimization, and wargame simulation to improve the total
logistics enterprise readiness; (2) the uncertainty and lack of data
which require large-scale systematic what-if scenarios and analysis
of alternatives to simulate potential new and unknown situations.
Our CoEvSoarRL learns a model of a logistic enterprise environ-
ment from historical data with Soar reinforcement learning. Then
the Soar model is used to evaluate new decisions and operating
conditions. We simulate the logistics enterprise vulnerability (risk)
and evolve new and more difficult operating conditions (tests);
meanwhile we also coevolve better logistics enterprise decision
(solutions) to counter the tests. We present proof-of-concept results
from a US Marine Corps maintenance and supply chain data set.
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1 INTRODUCTION
A logistics enterprise can contain many business processes in the ar-
eas of maintenance, supply, transportation, health services, general
engineering, and finance as a whole system. For example, the U.S.
Marine Corps (USMC) maintenance and supply chain is a complex
enterprise and exemplifies a socio-technological infrastructures
that require continuous learning and optimization. Machine learn-
ing (ML) algorithms and game theory [9, 14], combined in “deep
learning” to perform artificial intelligence (AI) benchmark tasks,
demonstrate superb performance in comparison to human [3, 15].
It is imperative for the USMC to adopt more advanced data sciences,
including ML and AI techniques, to the end-to-end logistics chain.
Specifically, it is important to perform predictive analysis jointly
with what-if scenarios and analysis of alternatives to simulate new
environmental and operation conditions that the USMC logistics
has never encountered before to alleviate operational risk, e.g. criti-
cal mission delays. This problem is especially challenging because a
USMC expeditionary unit’s structure (e.g., table of organization and
equipment) may include many parts. For planning the readiness
of future USMC missions each part of the expeditionary unit has
specific needs for the duration and frequency of manpower, as well
as resources required for maintenance. Based on historical data, a
predictive model needs to infer the most probable parts based on
failure rates, demand history, and available manpower to support
the units’ operations in normal conditions as well as new, unex-
pected, and unknown conditions. To compute operation condition
perturbations for replenish and maintenance a logistic enterprise
simulation needs to create additional conditions, e.g. an unknown
blast, desert environment, and corrosion consideration. Since there
might be no historical data available for new operation conditions,
traditional predictive modeling and simulation analysis might not
be directly applicable. In this paper we investigate how to inte-
grate prediction and simulation to modify the logistic enterprise
demand models and generate new data based on reinforcement
learning [7, 16] and coevolutionary algorithms [6, 12] to reduce
operational risk.
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The contribution of this paper is to integrate Soar reinforcement
learning (Soar-RL) [7] as a predictive model with coevolutionary
algorithms [12] to perform prediction, optimization, and wargame
simulation in a use case in the USMCmaintenance and supply chain
logistics enterprise. The integration of Soar-RL with coevolutionary
algorithms is modeled as an asymmetrical wargame simulation
where a logistician is known as the self-player (defender/solution)
for a logistics enterprise and logistics operation conditions is the
opponent (attacker/test) for such an enterprise. The adversary of
a logistician are the logistic enterprise operating conditions. Note
we interchangeably use self-player for defender or solution, and
opponent for attacker or test.

Soar-RL is used for both self-player and opponent to learn its own
payoff function. Soar-RL learns and modifies the existing knowl-
edge rules from the external environmental reward and penalty.
Coevolutionary algorithms take a population-based approach to
model the self-player and opponent engagement and use the payoff
from the engagement as a fitness indicator. Both Soar-RL and co-
evolutionary algorithms support the investigation and simulation
of complex operation conditions and adversarial dynamics. The
framework (CoEvSoarRL) involves making prediction and planning
based on the behavior and interaction of a logistics enterprise with
some internal decision factors and with some external factors, such
as, the operating environment and adversaries.

The paper is organized as follows. Section 2 presents an overview
of the CoEvSoarRL. Section 3 describes the background and related
work. Section 4 introduces the USMC logistic enterprise use case.
Section 5 has the results for the use case. Section 6 discusses the
CoEvSoarRL and the results. Section 7 has conclusions and future
work.

2 OVERVIEW OF THE COEVSOARRL
In this paper, we investigate the integration of reinforcement learn-
ing and coevolutionary algorithms into an asymmetrical wargame
simulation CoEvSoarRL. In such a wargame simulation, the self-
player simulates decisions (solutions) made to handle the require-
ments and problems of a logistics enterprise such as a USMC main-
tenance and supply organization. In our set up, the opponent also
simulates environmental and adversarial conditions (tests) of the
USMC logistics enterprise. A self-player is a defender (solution)
and the opponent is an attacker (test).

The self-player tries to search and optimize decisions for a de-
fined measure of performance, i.e. its own fitness function, for ex-
ample, minimize time to return an equipment to its original state of
readiness. The opponent generates adversarial conditions as states
for the self-player to handle. In this sense, the wargame simulation
is a form of large-scale what-if analyses to investigate potential
new and unknown operation conditions for a logistics enterprise.
In the “coevolution” of the wargame simulation the opponent can
behave within the following categories:

Case 1 (random): random actions, e.g., weather, fire, pandemic,
earthquake, or other environmental uncertain factors.

Case 2 (strategic complement game): the opponent’s actions
linking to the interest of the self-player, e.g., a new method of trans-
portation of material.

Case 3 (strategic competition game): deliberately adversar-
ial actions minimizing the effect of the self-player’s actions, e.g., an
adversarial actor in a logistics chain disrupts a normal operation.

In the coevolutionary setting, the self-player and opponent eval-
uate their success with separate asymmetric objectives represented
by the value returned by their fitness functions. The self-player
or opponent makes decisions for its own benefit. The fitness func-
tion for the opponent in Case 1 (random) can be a probabilistic
model of the environment conditions such as in a Monte Carlo
simulation, the self-player needs only to act and handle the uncer-
tainty of an opponent. In Case 2 (strategic complement), self-player
can optimize its own fitness by leveraging the benefits of strate-
gic complement. In the USMC logistics use case, environmental
or adversarial conditions are often in Case 1 and 3, for example,
equipment operation conditions can be probabilistically generated
as perturbations in Case 1; or deliberately generated disruptions by
adversaries as in Case 3 (strategic competition). In this paper, we
focus on a use case of a competitive nature of the self-player and
opponent, as in Case 3. For a defined fitness function, the self-player
tries to maximize the fitness and the opponent tries to minimize
the fitness. We use Soar-RL to learn the fitness functions of both
players based on their true interaction data and represent them as
knowledge rules of Soar-RL. Both players then use coevolutionary
algorithms to compete and evolve together.

In CoEvSoarRL, we define the following terms (see Figure 1)
Environment: Observable data that players can use as input

for prediction and optimization. The players cannot change the
data.

Test: Observable data that a self-player can use as input for
prediction and optimization decisions (actions). The self-player
cannot change the data. For example, weather or terrain are state
variables that an opponent cannot change. The opponent decides
on how to construct a test.

Solution: Variables that the self-player are able to decide in
order to overcome the tests and improve fitness. The opponent
(test) is evaluated on the solution.

Fitness: Desired outcome and performance in the end of a en-
gagement for each player (self-player and opponent). Each player
has its own fitness function. The fitness calculation can be different,
asymmetrical for both players.

3 BACKGROUND
In this section we present background and related work for Markov
Processes, Soar reinforcement learning and coevolutionary algo-
rithms.

3.1 Markov Processes
The states of the adversary can be hidden (e.g., adversarial in-
tent), similar to hidden Markov models (HMM), or partially ob-
servable, similar to partially observable Markov decision process
(POMDP) [8]. ML algorithms are used to recover hidden states, par-
tially observable states, or non-observable information. Decisions
and fitnesss (typically observed at the end of an engagement) need
to be optimized .

HMM and PODMP are based on the Markov property. The ac-
cumulative reward, or so called Q-value, does not depend on only
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Figure 1: Self-player (Defender) and opponent (Attacker) use
opposing fitness functions. Fitness is the probability to have
days between deadlined to closed below average. The coevo-
lution simulation generates new data for both self-player
and opponent.

one state-action pair, but is computed as an accumulated value of
all the states including hidden and non-observable ones up to the
current time point. For a finite state set up, the global optimization
to maximize the reward of a player has a closed form solution that
guarantees the convergence [13, 19]. Therefore, if a planner looks
ahead and stops at a specific time point, the last best action is the
one that maximizes the estimated Q-value.

The Q-value is the reward in our CoEvSoarRL. In the repre-
sentation of reinforcement learning and more generic temporal
difference learning with relaxed Markov conditions the Q-value
can be modeled more flexibly. For example, one can update the Q-
value online along the process whenever there is an environment
reward observed. We also assume the ground truth fitness can be
only observed at the end of a game in our CoEvSoarRL.

3.2 Soar Reinforcement Learning (Soar-RL)
Soar-RL [7] is a cognitive architecture that scalably integrates a
rule-based AI system with many other capabilities, including rein-
forcement learning [16] and long-term memory. The main decision
cycle of Soar-RL involves rules that propose new operators (e.g.,
internal decisions or external actions), as well as preferences for
selecting amongst them; an architectural operator-selection pro-
cess; and application rules that modify agent state. A preference is
defined as the probability, contribution, or impact to reach the de-
sired outcome, e.g., the fitness, if an operator (decision) is selected.
The reinforcement learning module modifies numeric preferences
for selecting operators based on a reward signal, either via internal
or external source(s) – importantly, Soar-RL learns in an online,
incremental fashion and thus does not require batch processing of
(potentially big) data. Soar has been used in modeling large-scale
complex cognitive functions for warfighting processes like the ones
in a kill chain [18].

In the coevolution simulation played by a self-player and oppo-
nent, large collections of asymmetrical decisions and actions for
both players to choose. By using Soar-RL, the self-player or oppo-
nent take action/state combinations to learn its preference 𝑓𝑑 (𝐷)
and 𝑓𝑎 (𝐴), respectively. 𝐷 (for self-player) and 𝐴 (for opponent)
could be different and asymmetric for the self-player and opponent.

In a Soar-RL, a preference is defined as the probability of a rule
to be used with respect to a total reward (i.e., fitness). To translate
into a coevolution simulation, a preference is the contribution of a
rule 𝑓𝑘 to be selected for a self-player to win. We define preferences
𝑓𝑘_𝑣1_𝑐1, 𝑓𝑘_𝑣0_𝑐1, 𝑓𝑘_𝑣1_𝑐0, and 𝑓𝑘_𝑣0_𝑐0, where 𝑓𝑘_𝑣1_𝑐1 means
“if a field 𝑓𝑘 of either 𝐷 or𝐴 is included (𝑣 = 1), there is a preference
(probability) 𝑓𝑘_𝑣1_𝑐1 for the self-player to win the game in the end
(𝑐 = 1), i.e., fitness=1 or win the game in the end."

Preferences can be learned from data for the rules. Let𝑚 be the
number of rules and 𝑁 the number of data for Soar-RL to perform
on-policy learning.

𝑄 (𝑠𝑡+1, 𝑎𝑡+1) = 𝑄 (𝑠𝑡 , 𝑎𝑡 ) + 𝛼 [𝑟 + 𝛾 max
𝑎∈𝐴

𝑄 (𝑠𝑡+1, 𝑎) −𝑄 (𝑠𝑡 , 𝑎𝑡 )] (1)

Since we only consider an on-policy setting or SARSA,𝑄 (𝑠𝑡+1, 𝑎) =
0 and let

𝛿𝑡 = 𝛼 (𝑟𝑡+1 −𝑄 (𝑠𝑡 , 𝑎𝑡 )) (2)
𝛼, 𝑟𝑡+1 = 1 for a positive reward or −1 for a negative reward. In
order to converge, 𝑟∗ = 𝑄 (𝑠∗, 𝑎∗) in Equation (2), we ask: Is there
a set of preferences 𝑝1, 𝑝2, ..., 𝑝𝑚 that makes 𝛿𝑡 in Equation (2) as
small as possible when 𝑡 →∞.

The total preference is the summation of the preferences from
each of the action/state combinations (i.e., Q-value in Equation (1)).
For any action/state combinationwhich consists of𝐾 fields included
(𝑣 = 1) or not included (𝑣 = 0). Equation (3) decides a win in the
end.

𝐾∑
𝑘=1

𝑓𝑘_𝑣∗_𝑐1 >

𝐾∑
𝑘=1

𝑓𝑘_𝑣∗_𝑐0, (3)

where ∗ denotes value 1 or 0 for field 𝑓𝑘 . The self-player gains a
positive reward 1 if a correct action is taken at time 𝑡 or a negative
reward−1 if a wrong action is taken. For example, for an action/state
combination, if total preference added for win is larger than lose,
the predicted result would be win. If the ground truth is indeed
win for this combination for the self-player, then each of the 𝐾 win
rules’ preferences related to the combination is modified using a
positive reward 1

𝐾
. If the ground truth is lose for this combination,

each of the same 𝐾 rules’ preferences is modified using a negative
reward − 1

𝐾
. In other words, Soar-RL always modifies the rules that

involve the predicted win or loss. Note some fields that are not
included (𝑣 = 0) can also contribute positively to the win (𝑐 = 1)
in Equation (3), this is an example of counterfactuals learning [11]
implemented in Soar-RL.

3.3 Coevolutionary Algorithms
Coevolutionary algorithms [6, 10, 12] related to evolutionary al-
gorithms and genetic algorithms [2, 4], explore domains in which
the quality of a candidate solution (e.g., an action combination)
is determined by its ability to successfully pass some set of tests
(attacks), for example, solutions (defenses) in a logistics chain need
to pass the known operating conditions that are difficult or ad-
versarial tests (attacks). Competitive coevolutionary algorithms
are used to solve minmax-problems similar to those encountered
by generative adversarial networks (GANs) [1, 5, 17]. Adversarial
engagements of players can be computationally modeled. Competi-
tive coevolutionary algorithms take a population-based (parallel)
approach to iterative adversarial engagement and can explore a
different behavioral space. The use case tests (adversarial attacker

1909



GECCO ’21 Companion, July 10–14, 2021, Lille, France Ying Zhao, Erik Hemberg, Nate Derbinsky, Gabino Mata, and Una-May O’Reilly

Algorithm 1 Coevolutionary Algorithm
Input:
𝑇 : number of iterations 𝑓 𝑠, 𝑓 𝑜 : Fitness functions
𝜇: mutation probability, 𝜆 : population size
1: A0 ← [a1,0, . . . , a𝜆,0 ] ⊲ Initial test population
2: D0 ← [d1,0, . . . , d𝜆,0 ] ⊲ Initial solution population
3: 𝑡 ← 0 ⊲ Initialize iteration counter
4: repeat
5: 𝑡 ← 𝑡 + 1 ⊲ Increase counter
6: A𝑡 ← 𝑠𝑒𝑙𝑒𝑐𝑡 (A𝑡−1)) ⊲ Selection
7: A𝑡 ← 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 (A𝑡 , 𝜇)) ⊲ Mutation and crossover
8: ⊲ Best test
9: a′∗, d′∗ ← argmina∈A𝑡 argmaxd∈D𝑡−1 𝑓 𝑜 (a, d)
10: ⊲ Replace worst test
11: if 𝑓 𝑜 (a′∗, d′∗) < 𝑓 𝑜 (a𝜆,𝑡−1, d𝜆,𝑡−1) then
12: a𝜆,𝑡−1 ← a′∗ ⊲ Update population
13: A𝑡 ← A𝑡−1 ⊲ Copy population
14: 𝑡 ← 𝑡 + 1 ⊲ Increase counter before alternating to solutions
15: D𝑡 ← 𝑠𝑒𝑙𝑒𝑐𝑡 (D𝑡−1)) ⊲ Selection
16: D𝑡 ← 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 (D𝑡 , 𝜇)) ⊲ Mutation and crossover
17: ⊲ Best solution
18: a′0, d

′
0 ← argmina∈A𝑡 argmaxd∈D𝑡 𝑓 𝑠 (a, d)

19: ⊲ Replace worst solution
20: if 𝑓 𝑠 (a′0, d

′
0) > 𝑓 𝑠 (a𝜆,𝑡 , d𝜆,𝑡−1) then

21: d𝜆,𝑡−1 ← d′0 ⊲ Update population
22: D𝑡 ← D𝑡−1 ⊲ Copy population
23: until 𝑡 ≥ 𝑇
24: a∗, d∗ ← argmina∈A𝑇 argmaxd∈D𝑇 𝑓 𝑠 (a, d) ⊲ Best test
25: return a∗, d∗

population) are actively or passively thwarting the effectiveness
of the problem solution (defender). The coevolutionary algorithms
are used to identify successful, novel, as well as the most effective
means of solutions (defenses) against various tests (attacks). In
this competitive game, the test (attacker) and solution (defender)
strategies can lead to an arms race between the adversaries, both
adapting or evolving while pursuing conflicting objectives.

A basic coevolutionary algorithm evolves two populations with
e.g. tournament selection and for variation uses crossover and mu-
tation. One population comprises tests (attacks) and the other solu-
tions (defenses). In each generation, engagements are formed by
pairing attack and defense. The populations are evolved in alternat-
ing steps: first the test population is selected, varied, updated and
evaluated against the solutions, and then the solutions population
is selected, varied, updated and evaluated against the tests. Each
test–solution pair is dispatched to the engagement component and
the result is used as a part of the fitness for each of them. Fitness is
calculated over all an adversary’s engagements.

4 USE CASE - COEVSOARRL FOR A USMC
LOGISTICS ENTERPRISE

As an example use case we use a USMC maintenance and supply
chain data set. Some operational cost and risk comes from the un-
certainty and unknown operation conditions that constitute the key
challenges for the USMC maintenance and supply chain. For exam-
ple, the uncertainty of the reliability of assets has caused the USMC
to maintain and operate with excess equipment and supplies. In the
past, data analytics including ML have been used by the USMC to
address variety of challenges. For example, predictive models have
been used to predict equipment reliability and probability of failure,
in order to infer the numbers of spare parts required to improve
stock performance and synchronize budget execution.

Figure 2: An example of USMC logistic enterprise equip-
ment maintenance and logistics process

.

Our CoEvSoarRL addresses prediction and optimization, more
importantly, large-scale systematic what-if scenarios and analysis
of alternatives and wargame simulation towards discovering vul-
nerability and optimizing a total readiness for the maintenance and
supply chain for new and unseen operation conditions. We now
describe the the USMC logistics enterprise, the CoEvSoarRL and
the setup.

4.1 Logistics Enterprise
Currently in the USMC maintenance and supply system, as shown
in Figure 2, a major USMC equipment or part of an equipment fails,
a service ticket is opened. A service ticket is then taken care of
in a long sequence of actions (decisions) such as to be repaired,
replaced (in various exchanges and echelons) or requisitioned from
the supply system. If an equipment or related parts cannot be re-
paired or replaced such as a consumable like fuel or battery, they
are purchased or requisitioned. The service ticket is closed when
the equipment and parts are returned and ready to use. The time
(usually days) between the open date and close date of the service
ticket indicates how long it takes to make equipment and associated
parts ready to use again through the maintenance and supply chain.
As shown in Figure 2, for major USMC equipment, before its owner
starts a service requirement, how the equipment is used such as
miles, hours, locations, and missions might decide the service pri-
ority of the equipment such as urgent, critical, deadlined, routine
maintenance etc. When equipment is deadlined it means that the
equipment is not operational and it stops the whole mission, i.e.
poses a risk to the mission, e.g. a faulty seat belt can make equip-
ment deadlined. Sometimes parts are repairable like an engine or
consumable like fuel.
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4.2 CoEvSoarRL
For this problem, coevolutionary algorithms are used with the
following set up in a coevolution simulation:

Opponent (Test): The context (conditions) of the USMCS lo-
gistics enterprise. Logistics chain problems with action (decision)
variables 𝐴 such as owner’s profile, equipment usage (miles and
hours, operation locations), service priority, defect codes, which
part is repairable, what part is to buy, which is the funding level
for purchase, what is the approval status.

Self-player (Solution): The logistician (demander) in the USMC
logistics enterprise. Logistics chain solutions with action (decision)
variables 𝐷 such as holders (who perform initial diagnosis of de-
fects), how many spare parts, which repair or replace shops to use,
which suppliers or transportation methods to use, what manpower
to use. These data fields are decisions and actions that can be taken
to pass the tests and optimize the measure of performance (fitness).

Fitness: The probability to have the maintenance days between
deadlined and closed is less than the average computed from the
historical data set.

We use a machine learning algorithm such as a predictive model
or reinforcement learning model like Soar-RL is to learn a fitness 𝑓
between test, solution, and fitness i.e., 𝑓𝑑 (𝐷) and 𝑓𝑎 (𝐴). For coevo-
lution we use a wargame simulation. The test (opponent) needs to
minimize the fitness and the solution (self-player) needs to maxi-
mize the fitness. In the USMC logistic enterprise use case, the test
and solution have opposite, not necessary zero-sum, optimization
objectives 𝑓𝑑 and 𝑓𝑎 , their action (decision) variables are different
so the wargame simulation is asymmetrical.

In the coevolutionary search, the opponent (test) needs to evolve
logistics contexts described by the combinations of the opponent’s
decision variables 𝐴 to decrease the fitness of the self-player (solu-
tion); The self-player (solution) needs to evolve logistics decisions
described by the combinations of the self-player’s decision variables
𝐷 to increase the fitness. A high fitness for the self-player means
better readiness for the USMC logistics. Thus if the self-player (solu-
tion) can handle more difficult contexts generated by the opponent
(test), the readiness is improved. As shown in Figure 1 both the
Opponent and Self-Player evolve and coevolve and both are guided
by the fitness functions that reflect the adversaries competing ob-
jectives. We use Soar-RL to learn two fitness functions separately
for the Self-Player and Opponent and then use Soar-RL models
jointly in the coevolutionary algorithms. The coevolution simula-
tion generates data that does not exist in the historical database.

4.3 Setup
We first fuse data for a type of USMC equipment from a few
databases including maintenance, supply, and equipment usage.
We then aggregate the data for each service ticket with the follow-
ing sources:

Maintenance history: unique number of service request types,
unique number of defect codes, unique number of operational sta-
tus, unique number of echelon of maintenance, unique number of
master priority code, count of job status dates, count of service
cross-references, unique number of service parts, count of service
activities, count of task numbers.

Figure 3: An example of opponent with id 10𝑓 𝑒75 and self-
player with id 𝑏642𝑐 𝑓 configurations exists in the historical
database, i.e., it is one of the 1,212 service tickets. It is a
configuration for opponent and self-player with the fitness
value -0.340 in Figure 7(a). It is the starting point for the co-
evolution.

Table 1: Coevolutionary Algorithm parameter settings.

Parameter Value
Population size 10
Max length 489
Elite size 1
Generations 80
Tournament size 2
Crossover probability 0.8 (single point crossover)
Mutation probability 0.1 (int flip mutation)
Runs 30

Requisition data: maximumof part charge, count of document
numbers, count of parts update dates, count of requirement num-
bers, count of unit issue, count of item types, count of supply route
locations.

Equipment usage data: owner unit address code, equipment
operation time code, and meter reading.

A total of 489 aggregated variables represent states and decisions
for both the self-player and opponent. We divide the 489 variables
into two groups: the Opponent has 369 variables labeled “(O)" and
Self-Player has 120 variables labeled “(S)". They all potentially cor-
relate with the fitness. The sample data set contains 1,212 service
numbers (tickets) that are deadlined for about two years for the
type of equipment, 132 tickets ( 11%) have the days between dead-
lined and closed date more than 32 days (32 days is the mean of the
days between the deadlined and closed dates for the data set). The
number of rules learned from the data set using Soar-RL for the
fitness functions 𝑓𝑑 (𝐷) and 𝑓𝑎 (𝐴) are 489*4=1,956, respectively.

Figure 3 shows an example of opponent (maintenance problem
with variables with “(O)") and self-player (maintenance solution
with variables with “(S)") configurations which exist in the historical
database.

Table 1 show the parameters used for the coevolutionary algo-
rithm runs. We used a version of Donkey GE https://github.com/
flexgp/donkey_ge with each player decision encoded as true or
false.
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Figure 4: The convergence of learning preferences of the
rules in Soar-RL

5 RESULTS FOR USMC LOGISTICS
ENTERPRISE WITH COEVSOARRL

Learning Soar-RL rules. Since Soar-RL is an online on-policy
machine learning algorithm, it is important to show the algorithm
converges in practice. Figure 4 shows the convergence of the the
preference change for the USMC use case when learning the self-
player’s fitness, i.e., 𝑓𝑑 (𝐷) when the iteration is 20. Learning of the
opponent’s fitness 𝑓𝑎 (𝐴) has similar convergence, each generates
1,956 Soar-RL rules.

Coevolving self-player and opponent. Figures 7(a), (b), and (c)
show the early generations of the evolving Opponents and how
their fitness values (the values on the heatmaps) change in each
generation. The generation 0 in Figure 7(a) starts with the existing
data as shown in Figure 3, which is the least fit logistics test against
the most fit logistics solution (𝑏642𝑐 𝑓 ). The Opponent evolves three
more fit tests 8𝑓 5𝑏7𝑎, 2𝑐4081, and 𝑐1𝑑409 with the fitness value
-0.340,-0.339, and -0.339 respectively. Figure 5 shows 𝑐1𝑑409 is one
of the more fit tests that do not exist in the historical USMC logistics
enetrprise database. This indicates the coevolutionary algorithms
are capable of performing a what-if scenarios and analysis of al-
ternatives that reveal possible new logistics tests. The wargame
simulation also suggests various self-player solutions to handle the
new opponent(test).

Figure 7(b) shows the evolution of the Opponent in generation
1. The Opponent evolves into more fit ones such as 𝑑284𝑒4 while
the Self-Player stays the same. Figure 7(c) shows the Opponent
continuously evolves to more fit ones and the Self-Player evolves
too, however, can not surpass the fitness of the best one 𝑏642𝑐 𝑓 .

Similarly, Figures 7(d), (e), and (f) show the coevolution search
process of the Self-Player. We see the same patterns here: When
the Opponent evolves into more fit ones such as 𝑑284𝑒4 while the
Self-Player evolves in Figure 7(e) and Figure 7(f) as well, however,
the Self-Player does not evolve to the ones that have higher fitness
than the one of 𝑏642𝑐 𝑓 (best fitness=0.204).

Figure 5: An example of opponent (attacker) starts with
a test id 10𝑓 𝑒75 that exists in the historical database and
evolves to a test id 𝑐1𝑑409 which does not exist in the histor-
ical database, i.e., it is not one of the 1,212 service tickets. It
is an evolved test with the fitness value -0.339 in Figure 7(a)
compared to the fitness of 0.340 of 10𝑓 𝑒75. The master prior-
ity code, service type, owner and defect combination could
make the test fitter (harder). The simulation suggests a self-
player solution for this opponent is 𝑏642𝑐 𝑓 .

Figure 6: An example of opponent continues evolving to
𝑑284𝑒4 in generation 2 in Figure 7(c) with self-player 257𝑓 𝑎4,
fitness -0.196. These evolved opponents are not in the exist-
ing database or one of the 1,212 service tickets. The tests con-
tain more service types, owner units and defect codes which
make opponent more difficult for the self-player to handle.

6 DISCUSSION
Figures 8(a) and (b) show the Opponent’s and Self-Player’s mean
and best fitness values changing sharply for the first three gener-
ations in the coevolutionary algorithms, respectively. The trends
validate the results and analyses that the Self-Player, representing
the logistics solutions, gets worse on average while the Opponent,
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Figure 7: Opponent and Self-Player’s evolutions of three generations. (a) opponent starts with a test id 10𝑓 𝑒75 that exists in the
historical database and evolves to a test id 𝑐1𝑑409which does not exist in the historical database. Opponent continues evolving
to 𝑑284𝑒4, which is more fit than 𝑐1𝑑409 in generation 1 in Figure 7(b) with self-player 𝑏642𝑐 𝑓 , and fitness -0.204; in generation
2 in Figure 7(c) with self-player 257𝑓 𝑎4, fitness -0.196. These evolved opponents are not in the existing database or one of the
1,212 service tickets. Notice that the self-player does not evolve to any better solution than 𝑏642𝑐 𝑓 as shown in Figure 7(d) to
(f). The tests contain more service types, owner units and defect codes which are less feasible in a normal time, however, more
feasible in a time of conflict and disruption, and can put challenge the solution side of the logistics chain.

representing logistics tests, gets better on average in the coevolu-
tion simulation. The algorithms simulate and discover possible new
tests that might need new solutions to handle. A “risk" can be dis-
covered when a solution can not evolve to be better solutions that
can handle the new tests. The example of evolved tests in Figure 5
is new and more difficult tests that do not exist in the historical
database. The one in Figure 5 in is more feasible than some others,
it could present challenges to the current logistics solution process.

Why use Soar-RL and Coevolutionary Algorithms. Soar-RL, as an
reinforcement learning algorithm, is rule-based and explainable, as
well as flexible enough to include and modify rules of engagement,
knowledge, and tactics, and also discover new rules from data such
as 1,956 rules generated in our data set. Soar-RL can also perform
online and on-policy learning, these characteristics makes it a ap-
plicable for defense application. In this paper, we also combine
Soar-RL and coevolutionary algorithms so it can be used in alter-
nating optimization and wargame simulation of two competitive
players. Soar-RL allows coevolutionary algorithms to search and

optimize the logistics solutions and total readiness to simulate and
handle difficult, new, and unknown environmental and operational
conditions.

In our CoEvSoarRL, a Soar-RL model is trained with sequences
(time-series) of states and actions combinations reinforced with the
final fitness results. The trained Soar-RL models are then used to
guide the search and evolution process of coevolutionary algorithms
in any time point by pulling out the rules usable only up to that time
point. For example, for a new opponent or logistic test that is never
seen before or overwhelmingly challenging, one can simulate better
solutions by adding rules of new possible decisions and actions with
estimated preferences from domain experts.

The mutation and crossover evolutionary operators are unsuper-
vised, and can produce better individuals (solutions or tests). Only
the selection operator for coevolutionary algorithms requires a
guidance of fitness function, which can be implemented using a su-
pervised or reinforcement machine learning algorithm, in our case,
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(a) Opponent

(b) Self-Player

Figure 8: Opponent and Self-Player’s mean and best fitness
values in three generations:The wargame simulation can
systematically simulate and discover possible new tests or
“vulnerabilities (risks)” for the logistics system and evolve
solutions accordingly.

the Soar-RL. Some data is required for training the coevolutionary
algorithm used.

Feasibility of Tests and Solutions. The total number of decision
combinations for the opponent (tests) is 2369, and total number of
decision combinations for self-player (solution) is 2120. However,
not all the solutions or tests are feasible in real life. The tests (oppo-
nents) and solutions (self-players) often have to comply to certain
feasibility constraints. It is possible to show that our CoEvSoarRL
can use the association patterns in the search space, consequently,
reduce the data sample size required to train machine learning
models. This will be future research of context-dependent Soar-RL
and coevolutionary algorithms.

7 CONCLUSION AND FUTUREWORK
We demonstrate a proof-of-concept framework (CoEvSoarRL) us-
ing Soar-RL based fitness prediction jointly with coevolution al-
gorithms that apply to a USMC logistics data set and beyond. We
demonstrate the CoEvSoarRL capable of performing what-if analy-
sis that reveal new logistics tests and solutions, and possible risks in
a logistics system. The simulation also can also suggest novel and
fitter solution (self-player) decisions to handle new tests (opponent)
that have never seen before. We show the CoEvSoarRL provides
an innovative wargame simulation to improve total readiness of a
resilient and agile logistics enterprise.

Future work will look at providing context-dependent informa-
tion to improve the feasibility of solutions. We will also investigate
the parameter sensitivity of the CoEvSoarRL.
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