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ABSTRACT
In this paper, we propose a new niching framework based on Fitness
Proportionate Sharing (FPS) to improve the diversity preservation
in multi-objective optimization. The traditional sharing approach
in standard Multi-Objective Genetic Algorithm (MOGA) is replaced
with the proposed niching framework and the adapted MOGA is
named MOGA-FPS. We also propose an algorithm which dynam-
ically finds the most suitable niche radius. Experimental results
show that MOGA-FPS significantly improves MOGA performance
and maintains a well spread distribution of optimal solution set
for bi-objective test functions compared with NSGA-II, MOGAS
(Multi-Objective Genetic Algorithm using a new fitness sharing
function).

CCS CONCEPTS
• Theory of computation → Mathematical optimization; •
Computing methodologies→ Genetic algorithms.
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1 INTRODUCTION
Diversity preservation is an important issue in EMOAs (Evolution-
ary Multi-Objective Algorithms). A solution set with well-spread
distribution provides decision makers with more information for
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choosing preferred solutions [4]. Standard sharing function is used
in MOGA [2] as a diversity maintenance technique. Despite the fact
that the standard sharing function has shown to maintain diver-
sity in MOGA, its challenges also include: (i) struggles to preserve
diversity when combined with elite-preserving strategies [3]; (ii)
crowded solution removal cannot be guaranteed when the popu-
lation contains many non-dominated solutions; (iii) the setting of
the parameter (niche radius) that adapts well to each test function.
To overcome these challenges, we propose a niching framework
based on FPS [6] to retain niche masters and completely eliminate
other individuals in each niche. We also introduce a dynamic niche
radius selection procedure to adjust the niche size depending on
the test function and the population.

2 METHODOLOGY
The proposed niching approach is developed based on FPS strategy.
FPS strategy performs sharing in niches based on individual fitness
and recently, was successfully extended to cluster analysis in [7, 8].
The fitness sharing function is elaborated by equation (4) in [6].
Unlike [6], the proposed niching framework performs FPS in a dif-
ferent manner. During the fitness sharing stage, we maintained the
original fitness of individual 𝑖 as shown in equation (1) and scaled
other individuals’ fitness using equation (2). Sharing is performed
on the objective space. Let 𝑆ℎ be a variable that ensures every indi-
vidual belongs to a unique niche and 𝑁 is the population size, we
use 𝑑𝑖 𝑗 to denote the normalized distance between two individuals
in the same rank and𝐶 is the niche count for the subsequent fitness
sharing. Algorithm 1 summarizes the proposed niching approach.

𝐹𝑖 = 𝐹𝑖 , (1)

𝐹 𝑗 =
𝐹 𝑗

𝐶
. (2)

With equation 1 & 2, we have mitigated the challenges (i) & (ii)
mentioned in the introduction section. To address challenge (iii),
we introduced a dynamic niche radius (𝛿𝑠ℎ) selection procedure.
Specifically, we first compute the maximum pairwise distance in
each rank and retain them in a vector. A median value is obtained
from the maximum pairwise distances retained in the vector and is
scaled with a certain fraction (𝑝) value to obtain the niche radius
(𝛿𝑠ℎ). The value of 𝑝 is problem dependent and it is set as 0.01−0.05
in this paper.
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Algorithm 1 The proposed niching framework.
1: Sh = ∅
2: for 𝑖 = 1 : 𝑁 do
3: C = ∅
4: if i ∉ Sh then
5: for 𝑗 = 1 : 𝑁 do
6: if rank i == rank j
7: find d_ij
8: if d_ij ≤ 𝛿 𝑠ℎ

9: C = C ∪ j
10: end for
11: Maintain the original fitness of the niche master using

equation 1
12: Scale the fitness of the other members in the niche using

equation 2
13: Sh = Sh ∪ C
14: end if
15: end for

3 RESULTS
We compared the MOGA-FPS with several famous Pareto-based
EMOAs (NSGA-II [1], MOGASc (a variant of MOGAS [3]) & MOGA
[2]). All seven adopted continuous test functions are summarized
in the first column of Table 1. Each algorithm is repeated 30 times
and table 1 presents the average spacing [5] values of MOGA-FPS
and the other competing algorithms. A smaller spacing indicates an
even distribution of the solution set and thus MOGA-FPS outper-
forms the competing algorithms indicating smaller spacing values
for all test suites. Figure 1 shows the non-dominated solution dis-
tribution obtained by MOGA-FPS and MOGA for ZDT1 & ZDT2
respectively. As shown in Figure 1, MOGA-FPS obtained an even
and well spread non-dominated solution set while MOGA shows
non-uniform solution distribution on the Pareto-front.

Table 1: Average spacing metric values comparison between
MOGA-FPS, NSGA-II, MOGASc, MOGA on all problems with
the best performance highlighted in bold.

Test suite 𝑛𝑑 MOGA-FPS NSGA-II MOGASc MOGA

FON 3 1.9798E-03 6.68946-03 5.0628E-03 7.8314E-03

KUR 3 9.0986E-02 1.0567E-01 1.4537E-01 1.8088E-01

ZDT1 30 4.2318E-03 7.0212E-03 1.7053E-02 1.0018E-02

ZDT2 30 2.1995E-03 7.3835E-03 5.7836E-03 1.0557E-02

ZDT3 30 2.5187E-03 7.0591E-03 5.8503E-03 9.5228E-03

ZDT4 10 3.4103E-03 6.7298E-03 5.7992E-03 7.1751E-03

ZDT6 10 3.5728E-03 6.9174E-03 4.7931E-03 6.4277E-03

4 CONCLUSION & FUTURE DIRECTIONS
In this paper, we presented a new diversity preservation technique
and integrated it with the elite-preserving MOGA framework. The
adapted MOGA, namely MOGA-FPS, mitigates the drawbacks as-
sociated with the original MOGA and minimize the gaps among
optimal solution sets. Furthermore, we proposed a dynamic niche
radius selection strategy for MOGA-FPS to adapt to the change of
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(a) MOGA-FPS Non-dominated
solutions for ZDT1.
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(b) MOGA-FPS Non-dominated
solutions for ZDT2.
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(c) MOGA Non-dominated
solutions for ZDT1.
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(d) MOGA Non-dominated
solutions for ZDT2.

Figure 1: Distribution of Non-dominated solutions of the
last generation for ZDT1 & ZDT2 using MOGA-FPS and
MOGA.

the population or benchmark problems. Experimental results and
comparison studies demonstrate that MOGA-FPS shows statisti-
cally better performance than the state-of-the-art approaches. In
the future, we will focus on investigating the efficacy of MOGA-FPS
on three and more objective optimization problems.
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