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ABSTRACT
Thresholding is one of the most common techniques for image
segmentation where an image is partitioned into several parts based
on its histogram of pixel intensities. Conventional algorithms work
efficiently for bi-level thresholding where an image is divided into
fore- and background, but their efficiency drastically declines for the
more complex case of multi-level thresholding due to the exhaustive
search that is employed. To address this problem, in this paper we
consider multi-level thresholding as an optimisation problem and
propose a novel population-based algorithm, HCS-BBD, which is
based on cuckoo search (CS) and biogeography-based optimisation
(BBO). To this end, HCS-BBD integrates a heterogeneous cuckoo
search strategy with a biogeography-based discovery operator. Our
findings in comparison to state-of-the-art and recent population-
based algorithms on different images convincingly demonstrate
HCS-BBD’s excellent capability in finding optimal threshold values.

CCS CONCEPTS
• Computing methodologies→ Bio-inspired approaches.
KEYWORDS
Image thresholding, multi-level thresholding, optimisation, cuckoo
search, biogeography-based optimisation.
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1 INTRODUCTION
Thresholding, one of the most common image segmentation ap-
proaches due to its simplicity and accuracy [18, 20], uses the his-
togram of image intensities for segmentation. For simple cases,
an object can be separated from the background by selecting an
appropriate threshold which can be found in the valley between
the two peaks in the histogram. However, most real images have
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multi-modal histograms, and finding multiple optimal threshold
values is not an easy task [15].

Otsu’s algorithm [21], one of the most widely employed im-
age thresholding techniques, is based on the between-class vari-
ance. While it can work efficiently for bi-level thresholding, the
computational time becomes infeasible when increasing the num-
ber of thresholds due to the exhaustive search that is employed.
Population-based metaheuristic algorithms such as particle swarm
optimisation (PSO) [8] or differential evolution (DE) [26] can be
used as a reliable alternative to tackle this issue. According to the
no free lunch theorem [27], there is no best algorithm to solve all
optimisation problem. As a consequence, many researchers have
focussed on employing population-based algorithms for multi-level
image thresholding. For example, [1] proposes a DE-based image
thresholding algorithm based on a mixture of Gaussian distribution,
while [17] uses a center-based DE for high-dimensional multi-level
image thresholding. In [29], PSO is employed for image threshold-
ing based on a cross-entropy objective function. Other population-
based algorithms that have been employed for multi-level image
thresholding include dragonfly algorithm (DA) [4], sine cosine al-
gorithm (SCA) [6], multi-verse optimiser (MVO) [7], cuckoo optimi-
sation algorithm (COA) [14], self-organizing migrating algorithm
(SOMA) [19], and human mental search (HMS) [16].

Cuckoo search (CS) [28] is an effective population-based algo-
rithm inspired by the breeding behaviour of cuckoos. It employs two
main operators, a Levy flight operator for updating each candidate
solution, and a discovery operator. CS has also shown satisfactory
performance for multi-level image thresholding [22]. Biogeography-
based optimisation (BBO) [25] is another population-based optimi-
sation algorithm, based on two main operators, mutation and mi-
gration. Generally, CS has advantages in global exploration, while
BBO has a stronger exploitation ability [2]. Consequently, com-
bining these two algorithms can benefit from both higher explo-
ration and exploitation. In this paper, we present a novel image
thresholding algorithm based on the combination of the two strate-
gies, employing heterogeneous cuckoo search from the CS algo-
rithm and a biogeography-based discovery operator. We employ a
variance-based objective function and demonstrate excellent thresh-
olding performance in comparison with other population-based
algorithms.

The remainder of the paper is organised as follows. Section 2
briefly describes some background onCS and BBO. Section 3 presents
our proposed algorithm, while Section 4 assesses it based on dif-
ferent metrics and in comparison with other algorithms. Section 5
concludes the paper.
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2 BACKGROUND
2.1 Cuckoo search
Cuckoo search (CS) [28] is a population-based metaheuristic algo-
rithm inspired by the breeding behaviour of cuckoos. In CS, each
egg corresponds to a candidate solution 𝑥𝑖 = (𝑥𝑖,1, 𝑥𝑖,2, ..., 𝑥𝑖,𝑁 ).

Each candidate solution is updated as

𝑥𝑛𝑒𝑤𝑖 = 𝑥𝑜𝑙𝑑𝑖 +𝛼 (𝑥
𝑜𝑙𝑑
𝑖 −𝑥𝑔)⊕𝐿𝑒𝑣𝑦 (𝛽) = 𝑥

𝑜𝑙𝑑
𝑖 +

0.01𝑢

|𝑣 |
1
𝛽

(𝑥𝑜𝑙𝑑𝑖 −𝑥𝑔), (1)

where ⊕ signifies entrywise multiplication, 𝛽 is the Levy flight ex-
ponent, 𝛼 is the step size, and 𝑥𝑔 is the best candidate solution found
so far, while 𝑢 and 𝑣 are two random random numbers calculated
as

𝑢 ∼ 𝑁 (0, 𝜎2
𝑢 ), 𝑣 ∼ 𝑁 (0, 𝜎2

𝑣 ), (2)

with

𝜎𝑢 =

{
Γ(1 + 𝛽) sin( 𝜋𝛽2 )

Γ[( 1+𝛽2 )]𝛽2(𝛽−1)/2

}1/𝛽

, 𝜎𝑣 = 1, (3)

where Γ is a standard gamma function.
A discovery operator is employed which is defined as

𝑥𝑛𝑒𝑤𝑖,𝑗 =

{
𝑥𝑜𝑙𝑑
𝑖, 𝑗
+ 𝑟 .(𝑥𝑟1, 𝑗 (𝑘) − 𝑥𝑟2, 𝑗 (𝑘)) if 𝑃 ≥ 𝑝𝑎

𝑥𝑜𝑙𝑑
𝑖, 𝑗

otherwise
. (4)

Algorithm 1 lists the CS algorithm in the form of pseudo-code.

Input :𝐷 : dimensionality of problem, 𝑁𝐹𝐸max: maximum
number of function evaluations, 𝑁𝑃 : population size

Output :
−→
𝑥∗: best solution

Generate the initial population 𝑃𝑜𝑝 randomly
Evaluate the objective function for each candidate solution
𝑁𝐹𝐸 = 𝑁𝑃

while 𝑁𝐹𝐸 < 𝑁𝐹𝐸max do
for 𝑖 ← 1 to 𝑁𝑃 do

Generate a new candidate solution, 𝑥𝑛𝑒𝑤
𝑖

, using Eq. (1)
Evaluate objective function for 𝑥𝑛𝑒𝑤

𝑖

if 𝑓 (𝑥𝑛𝑒𝑤
𝑖
) is better than 𝑓 (𝑥𝑜𝑙𝑑

𝑖
) then

Replace old candidate solution 𝑥𝑜𝑙𝑑
𝑖

with 𝑥𝑛𝑒𝑤
𝑖

end
end
𝑁𝐹𝐸 = 𝑁𝐹𝐸 + 𝑁𝑝

for 𝑖 ← 1 to 𝑁𝑃 do
for 𝑗 ← 1 to 𝐷 do

Generate 𝑥𝑛𝑒𝑤
𝑖 𝑗

using Eq. (4)
end
Evaluate objective function for 𝑥𝑛𝑒𝑤

𝑖

if 𝑓 (𝑥𝑛𝑒𝑤
𝑖
) is better than 𝑓 (𝑥𝑜𝑙𝑑

𝑖
) then

Replace old candidate solution 𝑥𝑜𝑙𝑑
𝑖

with 𝑥𝑛𝑒𝑤
𝑖

end
end
𝑁𝐹𝐸 = 𝑁𝐹𝐸 + 𝑁𝑝

end
𝑥∗ ← Best candidate solution in 𝑃𝑜𝑝

Algorithm 1: Pseudo-code of CS algorithm.

2.2 Biogeography-based optimisation
Biogeography-based optimisation (BBO) [25] is a population-based
algorithm which simulates island biogeography for optimisation.
Each candidate solution in BBO is called a habitat, and its qual-
ity corresponds to the habitat suitability index (HSI). A candidate
solution can be seen as a set of suitability index variables (SIVs).

In each iteration, the population is sorted based on the objective
function from best to worst and each candidate solution is assigned
to an immigration rate 𝜆𝐾 = (1 − 𝐾

𝑁𝑃
)𝐼 and an emigration rate

𝜇𝐾 = 𝐾
𝑁𝑃
𝐸, where 𝐼 and 𝐸 are the maximum immigration and

emigration rates (here 𝐼 = 𝐸 = 1), and 𝐾 is the number of species
of the habitats (𝐾 = 𝑁𝑃 − 𝑖) with 𝐾 for the best candidate solution
being 𝑁𝑃 − 1, 𝐾 for the second best candidate solution 𝑁𝑃 − 2, and
𝐾 for the worst candidate solution 0.

BBO has twomain operators, migration andmutation. Themigra-
tion operator shares information from different candidate solutions,
while the mutation operator alters a single candidate solution.

The BBO algorithm is given in pseudo-code form in Algorithm 2.

Input :𝐷 : dimensionality of problem, 𝑁𝐹𝐸max: maximum
number of function evaluations, 𝑁𝑃 : population size

Output :
−→
𝑥∗: the best solution

Generate the initial population 𝑃𝑜𝑝 uniform randomly
Evaluate the objective function for each candidate solution
𝑁𝐹𝐸 = 𝑁𝑃

while 𝑁𝐹𝐸 < 𝑁𝐹𝐸max do
Sort population from best to worst
Assign each candidate solution an immigration rate 𝜆𝑖 and
emigration rate 𝜇𝑖

for 𝑖 ← 1 to 𝑁𝑃 do
for 𝑗 ← 1 to 𝐷 do

if 𝑟𝑎𝑛𝑑 < 𝜆𝑖 then
Select a habitat 𝑥𝑘
𝑥𝑛𝑒𝑤
𝑖,𝑗

= 𝑥𝑜𝑙𝑑
𝑘,𝑗

else
𝑥𝑛𝑒𝑤
𝑖,𝑗

= 𝑥𝑜𝑙𝑑
𝑖,𝑗

end
end

end
for 𝑖 ← 1 to 𝑁𝑃 do

if 𝑟𝑎𝑛𝑑 < 𝑝𝑖 then
Change 𝑥𝑛𝑒𝑤

𝑖
by mutation

end
end
Evaluate objective function f(𝑥𝑛𝑒𝑤

𝑖
)

𝑁𝐹𝐸 = 𝑁𝐹𝐸 + 𝑁𝑝

Conduct elitism stage
end
𝑥∗ ← best candidate solution in 𝑃𝑜𝑝

Algorithm 2: Pseudo-code of BBO algorithm.

3 PROPOSED HCS-BBD ALGORITHM
Inspired by [2], in this paper, we propose a novel multi-level image
thresholding algorithm based on a combination of BBO and CS.
In the following, we first explain the components of our proposed
HCS-BBD algorithm, and then detail its workings.
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(a) Lenna (b) Boat (c) Peppers (d) Goldhill (e) House (f) 12003

(g) 181079 (h) 175043 (i) 101085 (j) 147091 (k) 101087 (l) 253027

Figure 1: Test images and their histograms.

3.1 Heterogeneous CS strategy
We employ a heterogeneous CS strategy (HCS) [3, 5] which is based
on a Levy flight distribution and a quantum mechanism. In HCS, a
candidate solution is updated as

𝑥𝑛𝑒𝑤𝑖 =


𝑥𝑜𝑙𝑑
𝑖
+ 𝛼.(𝑥𝑖 − 𝑥 𝑗 ) ⊕ 𝐿𝑒𝑣𝑦 (𝛽) if 2

3 < 𝑠𝑟 ≤ 1
𝑥𝑖 + 𝐿.(𝑥𝑖 − 𝑥𝑜𝑙𝑑𝑖 ) if 1

3 < 𝑠𝑟 ≤ 2
3

𝑥𝑖 + 𝜖.(𝑥𝑔 − 𝑥𝑜𝑙𝑑𝑖 ) otherwise
, (5)

where 𝐿 = 𝜎𝑙𝑛(1/𝜆), 𝜖 = 𝜎𝜆 , 𝑥𝑔 is the best candidate solution found
so far, 𝑥 is the average of all candidate solutions, and 𝑠𝑟 and 𝜆 are
two random numbers between 0 and 1. The updating strategy thus
has three components, one based on a Levy distribution, while the
others are based on a quantum mechanism. This heterogeneous
strategy can generate different candidate solutions with more di-
versification ability.

3.2 Biogeography-based discovery strategy
HCS-BBD uses a biogeography-based discovery (BBD) strategy
to create a new candidate solution. To this end, the population is
sorted from best to sort. Then, an emigration rate is assigned to
each candidate solution as

𝜇𝑘 =
𝑘

𝑁𝑃
𝐸. (6)

The BBD strategy for creating a new candidate solution is de-
scribed in Algorithm 3. Candidate solutions with better objective
function values can share more features with others, leading to
enhanced exploitation of the algorithm.

3.3 Representation
The representation determines how a candidate solution is encoded.
In this paper, we employ a one-dimensional array 𝑥 = [𝑡1, 𝑡2, ..., 𝑡𝑚]

Input :𝐷 : dimensionality of problem, 𝑥𝑜𝑙𝑑 : candidate solution,
𝑃𝑎 : discovery probability

Output :𝑥𝑛𝑒𝑤 : new candidate solution

for 𝑗 ← 1 to 𝐷 do
if 𝑟𝑎𝑛𝑑 > 𝑃𝑎 then

Select a candidate solution with probability ∝ 𝜇𝑘
Generate a random number 𝛼 between 0 and 1
𝑥𝑛𝑒𝑤
𝑖,𝑗

= 𝛼𝑥𝑜𝑙𝑑
𝑖,𝑗
+ (1 − 𝛼)𝑥𝑜𝑙𝑑

𝑘,𝑗

else
𝑥𝑛𝑒𝑤
𝑖,𝑗

= 𝑥𝑜𝑙𝑑
𝑖,𝑗

end
end

Algorithm 3: BBD strategy.

whose length is the number of threshold values, where 𝑡𝑖 is the 𝑖-th
threshold value. The upper and lower bounds of the search space
are set as 0 and 2𝑛 − 1, respectively, along each dimension, where
𝑛 is the number of bits representing a pixel.

3.4 Objective function
In this paper, we employ a variance-based objective function to
assess each candidate solution. If the image pixels fall into 𝐿 levels
and the number of pixels in the 𝑖-th level is equal to 𝑛𝑖 , then the
normalised histogram is obtained as

𝑝𝑖 = 𝑛𝑖/𝑁, 𝑝𝑖 ≥ 0,
𝐿∑
𝑖=1

𝑝𝑖 = 1. (7)

In bi-level thresholding with threshold 𝑡 , levels [1, . . . , 𝑡] levels
will be allocated to class𝐶0 and levels [𝑡 + 1, . . . , 𝐿] to class𝐶1. The
optimal value for 𝑡 is the one that maximises

𝜎2
𝐵 = 𝜔0 (𝜇0 − 𝜇𝑡 )2 + 𝜔1 (𝜇1 − 𝜇𝑡 )2, (8)
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where 𝜇𝑡 is the mean intensity of the entire image

𝜇𝑡 = 𝜔0𝜇0 + 𝜔1, 𝜔0 + 𝜔1 = 1, (9)

with

𝜇0 =

𝑘∑
𝑖=1

𝑖𝑝𝑖/𝜔0 and 𝜇1 =

𝐿∑
𝑖=𝑘+1

𝑖𝑝𝑖/𝜔1 . (10)

This method can be extended for multi-level image thresholding
to find𝑚 thresholds as [𝑡1, 𝑡2, . . . , 𝑡𝑚] to partition the image into
𝑚 classes: 𝐶0 for [0, . . . , 𝑡1 − 1], 𝐶1 for [𝑡1, . . . , 𝑡2 − 1], . . . , 𝐶𝑚 for
[𝑡𝑚, . . . , 𝑡2 − 1]. The objective function then becomes

𝐽 = 𝜔0 (𝜇0 − 𝜇𝑡 )2 + 𝜔1 (𝜇1 − 𝜇𝑡 )2 + · · · + 𝜔𝑚 (𝜇𝑚 − 𝜇𝑡 )2, (11)

which is the one we use in this paper.

Input :𝐷 : dimensionality of problem, 𝑁𝐹𝐸𝑚𝑎𝑥 : maximum
number of function evaluations, 𝑁𝑃 : population
size, 𝑃𝑎 : discovery probability

Output :
−→
𝑥∗: the best solution

Generate the initial population 𝑃𝑜𝑝 randomly using
encoding strategy from Section 3.3
Evaluate the objective function for each candidate solution
using Eq. (11)
𝑁𝐹𝐸 = 𝑁𝑃

while 𝑁𝐹𝐸 < 𝑁𝐹𝐸𝑚𝑎𝑥 do
// HCS strategy

for 𝑖 ← 1 to 𝑁𝑃 do
Generate a new candidate solution, 𝑥𝑛𝑒𝑤

𝑖
by HCS

strategy using Eq. (5)
Evaluate the objective function 𝑓 (𝑥𝑛𝑒𝑤

𝑖
) using

Eq. (11)
if 𝑓 (𝑥𝑛𝑒𝑤

𝑖
) is better than 𝑓 (𝑥𝑜𝑙𝑑

𝑖
) then

replace old candidate solution 𝑥𝑜𝑙𝑑
𝑖

with 𝑥𝑛𝑒𝑤
𝑖

end
end
𝑁𝐹𝐸 = 𝑁𝐹𝐸 + 𝑁𝑝
// BBD strategy

Sort the population from best to worst
Assign emigration rate 𝜇 to each candidate solution
for 𝑖 ← 1 to 𝑁𝑃 do

Generate a new candidate solution 𝑥𝑛𝑒𝑤
𝑖

using
Algorithm 3
Evaluate the objective function 𝑓 (𝑥𝑛𝑒𝑤

𝑖
) using

Eq. (11)
if 𝑓 (𝑥𝑛𝑒𝑤

𝑖
) is better than 𝑓 (𝑥𝑜𝑙𝑑

𝑖
) then

replace old candidate solution 𝑥𝑜𝑙𝑑
𝑖

with 𝑥𝑛𝑒𝑤
𝑖

end
end
𝑁𝐹𝐸 = 𝑁𝐹𝐸 + 𝑁𝑝

end
𝑥∗ ← best candidate solution in 𝑃𝑜𝑝

Algorithm4:HCS-BBD algorithm for multi-level image thresh-
olding.

3.5 Algorithm
Our proposed HCS-BBD algorithm is designed to find optimal
threshold values for a multi-level image thresholding problem. Al-
gorithm 4 details the workings of HCS-BBD in form of pseudo-code.

4 EXPERIMENTAL RESULTS
We evaluate the performance of our proposed HCS-BBD algorithm
and assess it against a set of other population-based competitors.
To this end, we select five popular images, namely Boats, Peppers,
Goldhill, Lenna, and House, as well as seven commonly employed
images from the Berkley segmentation repository [9], namely 12003,
181079, 175043, 101085, 147091, 101087, and 253027. Figure 1 shows
the images together with their histograms. As we can observe,
different images have different histogram characteristics. Some
such as Lenna have several peaks and valleys, while others such as
101087 have a smoother distribution, whereas e.g. Goldhill has a
histogram with abrupt changes.

We compare our algorithm with a number of other algorithms in-
cluding DE [26], PSO [24], GSA [23], DA [10], SCA [11], MVO [13],
SSA [12], BBO [25], and CS [28]. We select BBO and CS for com-
parison since our algorithm is based on these two. DE and PSO
algorithms are state-of-the-art algorithms, while some others such
as MVO and SSA are among the most recent approaches.

We set the number of thresholds to 5 and 10, and each algorithm
is run 25 times. Statistical results including mean and standard

(a) image (b) manual 1 (c) manual 2 (d) manual 3

(e) manual 4 (f) manual 5 (g) DE (h) PSO

(i) GSA (j) DA (k) SCA (l) SSA

(m) BBO (n) CS (o) HCS-BBD

Figure 2: Thresholded 101087 images for 𝐷 = 5 and all algo-
rithms.
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Table 1: Objective function results for all algorithms and images with 𝐷 = 5.

image DE PSO GSA DA SCA MVO SSA BBO CS HCS-BBD
Boats mean 2090.51 2091.33 2051.32 2091.59 2072.89 2090.11 2086.75 2092.14 2092.63 2092.58

std.dev. 1.36 0.79 13.68 0.62 10.64 1.39 3.76 0.49 0.09 0.14
rank 6 5 10 4 9 7 8 3 1 2

Peppers mean 2734.53 2736.24 2688.08 2735.31 2711.20 2734.60 2727.84 2737.62 2737.89 2737.98
std.dev. 2.64 1.06 22.34 7.65 11.62 1.71 5.60 0.45 0.21 0.12
rank 7 4 10 5 9 6 8 3 2 1

Goldhill mean 2336.97 2339.61 2291.43 2337.99 2320.71 2338.10 2336.06 2339.52 2340.16 2340.23
std.dev. 2.25 0.58 23.37 7.16 13.52 1.22 3.21 1.03 0.25 0.00
rank 7 3 10 6 9 5 8 4 2 1

Lenna mean 2211.60 2214.10 2159.79 2213.88 2193.86 2213.18 2209.45 2215.04 2215.52 2215.79
std.dev. 5.08 0.87 23.64 1.15 10.69 1.28 3.72 0.83 0.34 0.15
rank 7 4 10 5 9 6 8 3 2 1

House mean 1867.93 1870.14 1814.89 1870.51 1849.04 1868.56 1863.86 1870.97 1871.64 1871.76
std.dev. 2.35 0.79 20.63 1.18 10.96 1.34 4.02 1.36 0.29 0.16
rank 7 5 10 4 9 6 8 3 2 1

12003 mean 2908.91 2910.22 2859.46 2911.68 2885.84 2909.40 2902.54 2912.16 2912.52 2912.48
std.dev. 1.97 1.22 21.29 1.01 16.17 1.75 4.91 0.48 0.19 0.20
rank 7 5 10 4 9 6 8 3 1 2

181079 mean 2342.87 2344.33 2295.45 2345.36 2316.30 2342.76 2337.91 2346.55 2346.68 2346.71
std.dev. 2.40 1.00 17.20 1.06 16.14 2.16 3.51 0.25 0.17 0.13
rank 6 5 10 4 9 7 8 3 2 1

175043 mean 1313.81 1315.58 1271.83 1315.33 1296.08 1314.08 1311.03 1316.20 1316.64 1316.77
std.dev. 2.16 0.62 12.28 1.26 11.34 1.05 2.12 0.73 0.22 0.18
rank 7 4 10 5 9 6 8 3 2 1

101085 mean 3710.66 3710.82 3668.31 3713.60 3692.75 3710.43 3703.37 3714.04 3714.72 3714.58
std.dev. 2.63 1.95 16.71 1.05 10.30 2.25 6.53 0.64 0.16 0.24
rank 6 5 10 4 9 7 8 3 1 2

147091 mean 4127.85 4128.63 4082.37 4129.99 4105.02 4127.18 4119.42 4130.75 4131.20 4131.11
std.dev. 1.95 1.29 19.46 0.93 13.78 1.88 5.34 0.45 0.12 0.24
rank 6 5 10 4 9 7 8 3 1 2

101085 mean 5353.43 5354.01 5321.87 5354.84 5336.67 5353.11 5349.06 5355.26 5355.59 5355.70
std.dev. 1.70 0.88 14.42 0.67 8.82 1.31 3.79 0.50 0.18 0.11
rank 6 5 10 4 9 7 8 3 2 1

253027 mean 1607.39 1609.44 1568.16 1609.25 1591.69 1608.25 1606.73 1610.04 1610.49 1610.68
std.dev. 1.89 0.83 18.57 1.45 11.39 1.36 2.85 0.64 0.28 0.09
rank 7 4 10 5 9 6 8 3 2 1

average rank 6.58 4.50 10.00 4.50 9.00 6.33 8.00 3.08 1.67 1.33
overall rank 7 4.5 10 4.5 9 6 8 3 2 1

deviation are reported. The population size for all algorithms is
set to 50, while the number of function evaluations (as stopping
criterion) is set to 25,000. In our proposed algorithm, the habitat
modification probability, maximum immigration rate, maximum
emigration rate, and 𝑝𝑎 are set to 1, 1, 1, and 0.25, respectively,
while for other algorithms, we employed default settings from the
cited publications.

First, we assess the performance of HCS-BBD visually on 101087
as a representative image and show the segmented images for
all algorithms in Figure 2. Since the image is from the Berkeley
segmentation repository [9], it comes with several (often quite
different) manual segmentations, which are also shown in Figure 2.
As we can see, HCS-BBD can yield a better segmentation which is
for example noticeable in the lake area of the image which shows
less noise for HCS-BBD compared to the other algorithms.

Table 1 shows the objective function results for 𝐷 = 5. As we
can see from there, HCS-BBD is top ranked for 8 of the 12 images,

and ranked second for the others resulting in an average rank of
1.33, thus clearly giving the best performance of all methods. The
average ranks for CS and BBO are 1.67 and 3.08, respectively. As is
evident, our proposedmethod can lead to a significant improvement
over both.

For 𝐷 = 10, the results are given in Table 2. HCS-BBD ranks first
for 11 of the 12 images, leading to a clear first overall rank. CS is
ranked second, yet the margin between the average ranks of CS
and HCS-BBD is wide.

Feature similarity index measure (FSIM) [30] is a popular image
quality measure in the literature. Tables 3 and 4 show FSIM results
for 𝐷 = 5 and 𝐷 = 10, respectively. As can be seen from there, for
both cases HCS-BBD clearly outperforms all other algorithms.

Last not least, we perform a statistical comparison of HCS-BBD
with the other algorithms. In particular, we conduct a Wilcoxon
statistical signed rank test at 5% significance level whose results
are given in Table 5. As we can see, in all cases and based on
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Table 2: Objective function results for all algorithms and images with 𝐷 = 10.

image DE PSO GSA DA SCA MVO SSA BBO CS HCS-BBD
Boats mean 2143.96 2146.60 2124.61 2145.46 2125.86 2145.95 2143.65 2149.27 2150.61 2151.45

std.dev. 3.51 1.48 9.11 3.17 4.87 2.07 2.30 1.33 1.05 0.57
rank 7 4 10 6 9 5 8 3 2 1

Peppers mean 2785.77 2788.29 2766.04 2786.31 2769.47 2787.93 2785.27 2791.46 2792.82 2793.71
std.dev. 3.24 1.88 7.20 3.76 8.03 3.55 2.92 1.44 1.00 0.47
rank 7 4 10 6 9 5 8 3 2 1

Goldhill mean 2398.78 2400.78 2380.23 2397.80 2378.12 2400.02 2398.35 2403.54 2403.39 2405.74
std.dev. 2.42 1.30 6.72 3.82 6.36 1.84 2.35 1.29 1.59 0.89
rank 6 4 9 8 10 5 7 2 3 1

Lenna mean 2257.22 2260.03 2233.29 2256.26 2243.14 2258.37 2256.77 2261.95 2262.43 2264.56
std.dev. 2.36 1.45 11.87 4.53 4.92 1.76 2.14 1.20 1.30 0.63
rank 6 4 10 8 9 5 7 3 2 1

House mean 1931.57 1933.83 1908.33 1932.89 1913.33 1932.61 1930.08 1936.35 1937.55 1938.36
std.dev. 2.81 1.69 8.72 2.92 8.58 2.28 2.31 1.68 0.68 0.39
rank 7 4 10 5 9 6 8 3 2 1

12003 mean 2978.48 2981.24 2955.05 2978.26 2958.11 2978.95 2977.79 2983.72 2985.82 2986.26
std.dev. 2.34 2.03 6.98 4.15 5.99 1.92 3.13 1.30 0.70 0.55
rank 6 4 10 7 9 5 8 3 2 1

181079 mean 2402.08 2404.25 2382.04 2402.45 2384.93 2403.02 2401.28 2407.26 2408.33 2409.24
std.dev. 2.59 1.80 9.73 4.30 6.42 2.25 3.37 1.22 0.94 0.55
rank 7 4 10 6 9 5 8 3 2 1

175043 mean 1361.75 1363.69 1340.69 1360.51 1347.27 1362.79 1361.92 1365.37 1366.14 1367.56
std.dev. 2.38 1.17 9.48 4.23 5.46 1.07 1.96 0.93 1.05 0.40
rank 7 4 10 8 9 5 6 3 2 1

101085 mean 3803.32 3803.59 3777.99 3801.87 3786.02 3803.00 3798.19 3807.75 3810.51 3810.50
std.dev. 3.48 1.97 9.84 4.25 6.50 3.00 3.37 1.26 0.76 0.65
rank 5 4 10 7 9 6 8 3 1 2

147091 mean 4190.31 4191.83 4169.77 4189.45 4174.92 4190.83 4187.98 4195.50 4197.26 4197.97
std.dev. 3.37 2.14 7.74 3.30 4.95 2.59 3.15 1.55 0.66 0.64
rank 6 4 10 7 9 5 8 3 2 1

101085 mean 5404.37 5405.80 5390.91 5404.57 5391.97 5405.76 5403.52 5408.25 5409.29 5409.87
std.dev. 2.15 1.19 5.05 3.11 4.07 1.46 2.07 0.86 0.61 0.37
rank 7 4 10 6 9 5 8 3 2 1

253027 mean 1654.96 1657.94 1637.32 1655.25 1640.48 1656.84 1655.08 1660.07 1660.36 1661.79
std.dev. 2.84 1.50 7.95 2.92 5.44 1.82 1.95 1.07 1.02 0.32
rank 8 4 10 6 9 5 7 3 2 1

average rank 6.58 4.00 9.92 6.67 9.08 5.17 7.58 2.92 2.00 1.08
overall rank 6 4 10 7 9 5 8 3 2 1

both objective function and FSIM measures, the obtained 𝑝 values
are below 0.05, meaning that our proposed algorithm statistically
significantly outperforms the other methods.

5 CONCLUSIONS
In this paper, we have proposed a novel multi-level image thresh-
olding algorithm, HCS-BBD, based on cuckoo search (CS) and
biogeography-based optimisation (BBO) leveraging the exploration
ability of CS and the exploitation ability of BBO. Our HCS-BBD
algorithm encodes the threshold values as candidate solution, and
uses a variance-based objective function. Compared with nine other
population-based optimisation algorithms, an extensive set of ex-
periments show HCS-BBD to outperform them and to deliver ex-
cellent multi-level thresholding performance. In future work, we
intend to extend the algorithm to other domains such as neural
network training, while other objective functions are also under
investigation.

REFERENCES
[1] M. Ali, C.W. Ahn, andM. Pant. 2014. Multi-level image thresholding by synergetic

differential evolution. Applied Soft Computing 17 (2014), 1–11.
[2] X. Chen and K. Yu. 2019. Hybridizing cuckoo search algorithmwith biogeography-

based optimization for estimating photovoltaic model parameters. Solar Energy
180 (2019), 192–206.

[3] N. J. Cheung, X.-M. Ding, and H.-B. Shen. 2016. A nonhomogeneous cuckoo
search algorithm based on quantum mechanism for real parameter optimization.
IEEE Transactions on Cybernetics 47, 2 (2016), 391–402.

[4] M.-A. Díaz-Cortés, N. Ortega-Sánchez, S. Hinojosa, D. Oliva, E. Cuevas, R. Rojas,
and A. Demin. 2018. A multi-level thresholding method for breast thermograms
analysis using dragonfly algorithm. Infrared Physics & Technology 93 (2018),
346–361.

[5] X. Ding, Z. Xu, N. J. Cheung, and X. Liu. 2015. Parameter estimation of Takagi–
Sugeno fuzzy system using heterogeneous cuckoo search algorithm. Neurocom-
puting 151 (2015), 1332–1342.

[6] S. Gupta and K. Deep. 2019. Improved sine cosine algorithm with crossover
scheme for global optimization. Knowledge-Based Systems 165 (2019), 374–406.

[7] H. Jia, X. Peng, W. Song, C. Lang, Z. Xing, and K. Sun. 2019. Multiverse optimiza-
tion algorithm based on Lévy flight improvement for multithreshold color image
segmentation. IEEE Access 7 (2019), 32805–32844.

[8] J. Kennedy and R. Eberhart. 1995. Particle swarm optimization (PSO). In IEEE
International Conference on Neural Networks. 1942–1948.

1928



HCS-BBD: An Effective Population-Based Approach for Multi-Level Thresholding GECCO ’21 Companion, July 10–14, 2021, Lille, France

Table 3: FSIM results for all algorithms and images with 𝐷 = 5.

image DE PSO GSA DA SCA MVO SSA BBO CS HCS-BBD
Boats mean 0.9235 0.9241 0.8939 0.9242 0.9098 0.9234 0.9200 0.9241 0.9248 0.9249

std.dev. 1.3596 0.7910 13.6796 0.6225 10.6442 1.3949 3.7584 0.4941 0.0850 0.1395
rank 6 4.5 10 3 9 7 8 4.5 2 1

Peppers mean 0.8341 0.8353 0.8076 0.8346 0.8171 0.8352 0.8292 0.8366 0.8367 0.8366
std.dev. 2.6364 1.0646 22.3393 7.6469 11.6244 1.7127 5.5966 0.4505 0.2141 0.1178
rank 7 4 10 6 9 5 8 2.5 1 2.5

Goldhill mean 0.9221 0.9236 0.8915 0.9227 0.9105 0.9234 0.9210 0.9235 0.9247 0.9250
std.dev. 2.2520 0.5825 23.3665 7.1649 13.5249 1.2199 3.2117 1.0295 0.2543 0.0000
rank 7 3 10 6 9 5 8 4 2 1

Lenna mean 0.8877 0.8906 0.8530 0.8914 0.8740 0.8909 0.8866 0.8916 0.8931 0.8935
std.dev. 5.0806 0.8703 23.6370 1.1461 10.6932 1.2810 3.7242 0.8269 0.3389 0.1470
rank 7 6 10 4 9 5 8 3 2 1

House mean 0.9145 0.9159 0.8801 0.9159 0.9032 0.9153 0.9118 0.9164 0.9168 0.9164
std.dev. 2.3529 0.7881 20.6265 1.1831 10.9551 1.3395 4.0172 1.3562 0.2851 0.1641
rank 7 4.5 10 4.5 9 6 8 2.5 1 2.5

12003 mean 0.8210 0.8218 0.7786 0.8235 0.7987 0.8214 0.8155 0.8235 0.8241 0.8246
std.dev. 1.9693 1.2159 21.2939 1.0079 16.1665 1.7538 4.9056 0.4752 0.1946 0.1961
rank 7 5 10 3.5 9 6 8 3.5 2 1

181079 mean 0.8073 0.8077 0.7748 0.8074 0.7887 0.8051 0.8013 0.8079 0.8077 0.8081
std.dev. 2.4047 0.9972 17.2015 1.0630 16.1414 2.1639 3.5066 0.2455 0.1732 0.1318
rank 6 3.5 10 5 9 7 8 2 3.5 1

175043 mean 0.8989 0.8999 0.8635 0.9005 0.8842 0.8987 0.8955 0.9010 0.9010 0.9008
std.dev. 2.1621 0.6168 12.2775 1.2641 11.3428 1.0498 2.1249 0.7312 0.2164 0.1751
rank 6 5 10 4 9 7 8 1.5 1.5 3

101085 mean 0.8676 0.8669 0.8406 0.8692 0.8543 0.8671 0.8619 0.8688 0.8697 0.8695
std.dev. 2.6279 1.9491 16.7055 1.0485 10.3028 2.2486 6.5287 0.6393 0.1642 0.2383
rank 5 7 10 3 9 6 8 4 1 2

147091 mean 0.8431 0.8459 0.8210 0.8470 0.8276 0.8462 0.8385 0.8468 0.8477 0.8475
std.dev. 1.9458 1.2934 19.4573 0.9271 13.7819 1.8750 5.3352 0.4532 0.1225 0.2421
rank 7 6 10 3 9 5 8 4 1 2

101085 mean 0.8508 0.8515 0.8309 0.8522 0.8398 0.8509 0.8482 0.8523 0.8531 0.8534
std.dev. 1.7010 0.8845 14.4158 0.6733 8.8160 1.3145 3.7877 0.4957 0.1820 0.1119
rank 7 5 10 4 9 6 8 3 2 1

253027 mean 0.8768 0.8811 0.8460 0.8776 0.8641 0.8783 0.8761 0.8794 0.8816 0.8823
std.dev. 1.8863 0.8254 18.5669 1.4494 11.3921 1.3634 2.8541 0.6417 0.2781 0.0947
rank 7 3 10 6 9 5 8 4 2 1

average rank 6.58 4.71 10.00 4.33 9.00 5.83 8.00 3.21 1.75 1.58
overall rank 7 5 10 4 9 6 8 3 2 1

[9] D. Martin, C. Fowlkes, D. Tal, and J. Malik. 2001. A database of human segmented
natural images and its application to evaluating segmentation algorithms and
measuring ecological statistics. In 8th International Conference on Computer Vision,
Vol. 2. 416–423.

[10] S. Mirjalili. 2016. Dragonfly algorithm: a new meta-heuristic optimization tech-
nique for solving single-objective, discrete, and multi-objective problems. Neural
Computing and Applications 27, 4 (2016), 1053–1073.

[11] S. Mirjalili. 2016. SCA: a sine cosine algorithm for solving optimization problems.
Knowledge-Based Systems 96 (2016), 120–133.

[12] S. Mirjalili, A. H. Gandomi, S. Z. Mirjalili, S. Saremi, H. Faris, and S. M. Mirjalili.
2017. Salp swarm algorithm: A bio-inspired optimizer for engineering design
problems. Advances in Engineering Software 114 (2017), 163–191.

[13] S. Mirjalili, S. M. Mirjalili, and A. Hatamlou. 2016. Multi-verse optimizer: a nature-
inspired algorithm for global optimization. Neural Computing and Applications
27, 2 (2016), 495–513.

[14] S. J. Mousavirad and H. Ebrahimpour-Komleh. 2015. Entropy based optimal mul-
tilevel thresholding using cuckoo optimization algorithm. In 11th International
Conference on Innovations in Information Technology. 302–307.

[15] S. J. Mousavirad and H. Ebrahimpour-Komleh. 2017. Multilevel image thresh-
olding using entropy of histogram and recently developed population-based
metaheuristic algorithms. Evolutionary Intelligence 10, 1-2 (2017), 45–75.

[16] S. J. Mousavirad and H. Ebrahimpour-Komleh. 2019. Human mental search-based
multilevel thresholding for image segmentation. Applied Soft Computing (2019).

[17] S. J. Mousavirad, S. Rahnamayan, and G. Schaefer. 2020. Many-level image
thresholding using a center-based differential evolution algorithm. In Congress
on Evolutionary Computation.

[18] S. J. Mousavirad, G. Schaefer, and H. Ebrahimpour-Komleh. 2019. A benchmark
of population-based metaheuristic algorithms for high-dimensional multi-level
image thresholding. In IEEE Congress on Evolutionary Computation. 2394–2401.

[19] S. J. Mousavirad, G. Schaefer, and I. Korovin. 2020. High-dimensional multi-level
image thresholding using self-organizing migrating algorithm. In Genetic and
Evolutionary Computation Conference Companion. 1454–1459.

[20] S. J. Mousavirad, G. Schaefer, Z.Movahedi, and I. Korovin. 2020. High-dimensional
multi-level maximum variance threshold selection for image segmentation: a
benchmark of recent population-based metaheuristic algorithms. In Genetic and
Evolutionary Computation Conference Companion. 1608–1613.

[21] N. Otsu. 1979. A threshold selection method from gray-level histograms. IEEE
Transactions on Systems, Man, and Cybernetics 9, 1 (1979), 62–66.

[22] S. Pare, A. Kumar, V. Bajaj, and G. K. Singh. 2017. An efficient method for
multilevel color image thresholding using cuckoo search algorithm based on
minimum cross entropy. Applied Soft Computing 61 (2017), 570–592.

[23] E. Rashedi, H. Nezamabadi-Pour, and S. Saryazdi. 2009. GSA: a gravitational
search algorithm. Information Sciences 179, 13 (2009), 2232–2248.

[24] Y. Shi and R. Eberhart. 1998. A modified particle swarm optimizer. In IEEE
International Conference on Evolutionary Computation. 69–73.

1929



GECCO ’21 Companion, July 10–14, 2021, Lille, France Seyed Jalaleddin Mousavirad, Gerald Schaefer, and Diego Oliva, Salvador Hinojosa

Table 4: FSIM results for all algorithms and images with 𝐷 = 10.

image DE PSO GSA DA SCA MVO SSA BBO CS HCS-BBD
Boats mean 0.9676 0.9715 0.9510 0.9707 0.9517 0.9706 0.9686 0.9744 0.9760 0.9769

std.dev. 3.5109 1.4763 9.1107 3.1711 4.8727 2.0691 2.3007 1.3263 1.0526 0.5749
rank 8 4 10 5 9 6 7 3 2 1

Peppers mean 0.9048 0.9090 0.8787 0.9066 0.8810 0.9078 0.9064 0.9153 0.9186 0.9203
std.dev. 3.2401 1.8804 7.2028 3.7551 8.0281 3.5481 2.9223 1.4408 1.0022 0.4667
rank 8 4 10 6 9 5 7 3 2 1

Goldhill mean 0.9701 0.9703 0.9527 0.9694 0.9522 0.9698 0.9679 0.9732 0.9739 0.9745
std.dev. 2.4151 1.3026 6.7227 3.8174 6.3623 1.8436 2.3540 1.2886 1.5876 0.8949
rank 5 4 9 7 10 6 8 3 2 1

Lenna mean 0.9447 0.9491 0.9169 0.9445 0.9293 0.9478 0.9438 0.9529 0.9546 0.9561
std.dev. 2.3623 1.4477 11.8650 4.5304 4.9243 1.7553 2.1422 1.2009 1.2960 0.6270
rank 6 4 10 7 9 5 8 3 2 1

House mean 0.9656 0.9686 0.9473 0.9693 0.9498 0.9675 0.9637 0.9714 0.9733 0.9728
std.dev. 2.8134 1.6877 8.7225 2.9236 8.5777 2.2827 2.3143 1.6848 0.6844 0.3917
rank 7 5 10 4 9 6 8 3 1 2

12003 mean 0.9143 0.9189 0.8786 0.9132 0.8824 0.9139 0.9138 0.9235 0.9274 0.9280
std.dev. 2.3359 2.0293 6.9807 4.1517 5.9884 1.9237 3.1299 1.2991 0.6955 0.5489
rank 5 4 10 8 9 6 7 3 2 1

181079 mean 0.9026 0.9072 0.8698 0.9026 0.8719 0.9034 0.9004 0.9120 0.9139 0.9168
std.dev. 2.5941 1.7952 9.7276 4.2976 6.4241 2.2517 3.3670 1.2172 0.9393 0.5534
rank 6.5 4 10 6.5 9 5 8 3 2 1

175043 mean 0.9571 0.9597 0.9351 0.9557 0.9386 0.9592 0.9553 0.9623 0.9647 0.9644
std.dev. 2.3802 1.1668 9.4810 4.2312 5.4629 1.0748 1.9561 0.9323 1.0524 0.3994
rank 6 4 10 7 9 5 8 3 1 2

101085 mean 0.9434 0.9439 0.9249 0.9436 0.9279 0.9441 0.9367 0.9473 0.9504 0.9492
std.dev. 3.4770 1.9715 9.8360 4.2537 6.5007 2.9961 3.3685 1.2586 0.7595 0.6535
rank 7 5 10 6 9 4 8 3 1 2

147091 mean 0.8993 0.8987 0.8845 0.8983 0.8862 0.9017 0.8964 0.9042 0.9067 0.9074
std.dev. 3.3711 2.1365 7.7430 3.3031 4.9543 2.5855 3.1521 1.5523 0.6589 0.6445
rank 5 6 10 7 9 4 8 3 2 1

101085 mean 0.9235 0.9261 0.9049 0.9245 0.9052 0.9262 0.9227 0.9307 0.9324 0.9330
std.dev. 2.1522 1.1852 5.0459 3.1085 4.0689 1.4614 2.0673 0.8629 0.6135 0.3726
rank 7 5 10 6 9 4 8 3 2 1

253027 mean 0.9400 0.9461 0.9151 0.9407 0.9194 0.9442 0.9400 0.9500 0.9506 0.9525
std.dev. 2.8448 1.5014 7.9451 2.9239 5.4422 1.8226 1.9532 1.0703 1.0195 0.3205
rank 7.5 4 10 6 9 5 7.5 3 2 1

average rank 6.50 4.42 9.92 6.29 9.08 5.08 7.71 3.00 1.75 1.25
overall rank 7 4 10 6 9 5 8 3 2 1

[25] D. Simon. 2008. Biogeography-based optimization. IEEE Transactions on Evolu-
tionary Computation 12, 6 (2008), 702–713.

[26] R. Storn and K. Price. 1997. Differential evolution–a simple and efficient heuristic
for global optimization over continuous spaces. Journal of Global Optimization

Table 5: Results of Wilcoxon signed rank test.

𝑝 value
objective function FSIM

HCS-BBD vs. DE 1.8215e-05 1.8108e-05
HCS-BBD vs. PSO 1.8215e-05 1.8197e-05
HCS-BBD vs. GSA 1.8215e-05 1.8197e-05
HCS-BBD vs. DA 1.8215e-05 1.8162e-05
HCS-BBD vs. SCA 1.8215e-05 1.8197e-05
HCS-BBD vs. MVO 1.8215e-05 1.8197e-05
HCS-BBD vs. SSA 1.8215e-05 1.8126e-05
HCS-BBD vs. BBO 1.8215e-05 4.9112e-05
HCS-BBD vs. CS 3.5504e-04 0.0128

11, 4 (1997), 341–359.
[27] D. Wolpert and G. Macready. 1997. No free lunch theorems for optimization.

IEEE Transactions on Evolutionary Computation 1, 1 (1997), 67–82.
[28] X.-S. Yang and S. Deb. 2009. Cuckoo search via Lévy flights. InWorld Congress

on Nature & Biologically Inspired Computing. 210–214.
[29] P.-Y. Yin. 2007. Multilevel minimum cross entropy threshold selection based on

particle swarm optimization. Appl. Math. Comput. 184, 2 (2007), 503–513.
[30] L. Zhang, L. Zhang, X. Mou, and D. Zhang. 2011. FSIM: A feature similarity index

for image quality assessment. IEEE Transactions on Image Processing 20, 8 (2011),
2378–2386.

1930


	Abstract
	1 Introduction
	2 Background
	2.1 Cuckoo search
	2.2 Biogeography-based optimisation

	3 Proposed HCS-BBD Algorithm
	3.1 Heterogeneous CS strategy
	3.2 Biogeography-based discovery strategy
	3.3 Representation
	3.4 Objective function
	3.5 Algorithm

	4 Experimental results
	5 Conclusions
	References

