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ABSTRACT

Thresholding is one of the most common techniques for image
segmentation where an image is partitioned into several parts based
on its histogram of pixel intensities. Conventional algorithms work
efficiently for bi-level thresholding where an image is divided into
fore- and background, but their efficiency drastically declines for the
more complex case of multi-level thresholding due to the exhaustive
search that is employed. To address this problem, in this paper we
consider multi-level thresholding as an optimisation problem and
propose a novel population-based algorithm, HCS-BBD, which is
based on cuckoo search (CS) and biogeography-based optimisation
(BBO). To this end, HCS-BBD integrates a heterogeneous cuckoo
search strategy with a biogeography-based discovery operator. Our
findings in comparison to state-of-the-art and recent population-
based algorithms on different images convincingly demonstrate
HCS-BBD’s excellent capability in finding optimal threshold values.
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1 INTRODUCTION

Thresholding, one of the most common image segmentation ap-
proaches due to its simplicity and accuracy [18, 20], uses the his-
togram of image intensities for segmentation. For simple cases,
an object can be separated from the background by selecting an
appropriate threshold which can be found in the valley between
the two peaks in the histogram. However, most real images have
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multi-modal histograms, and finding multiple optimal threshold
values is not an easy task [15].

Otsu’s algorithm [21], one of the most widely employed im-
age thresholding techniques, is based on the between-class vari-
ance. While it can work efficiently for bi-level thresholding, the
computational time becomes infeasible when increasing the num-
ber of thresholds due to the exhaustive search that is employed.
Population-based metaheuristic algorithms such as particle swarm
optimisation (PSO) [8] or differential evolution (DE) [26] can be
used as a reliable alternative to tackle this issue. According to the
no free lunch theorem [27], there is no best algorithm to solve all
optimisation problem. As a consequence, many researchers have
focussed on employing population-based algorithms for multi-level
image thresholding. For example, [1] proposes a DE-based image
thresholding algorithm based on a mixture of Gaussian distribution,
while [17] uses a center-based DE for high-dimensional multi-level
image thresholding. In [29], PSO is employed for image threshold-
ing based on a cross-entropy objective function. Other population-
based algorithms that have been employed for multi-level image
thresholding include dragonfly algorithm (DA) [4], sine cosine al-
gorithm (SCA) [6], multi-verse optimiser (MVO) [7], cuckoo optimi-
sation algorithm (COA) [14], self-organizing migrating algorithm
(SOMA) [19], and human mental search (HMS) [16].

Cuckoo search (CS) [28] is an effective population-based algo-
rithm inspired by the breeding behaviour of cuckoos. It employs two
main operators, a Levy flight operator for updating each candidate
solution, and a discovery operator. CS has also shown satisfactory
performance for multi-level image thresholding [22]. Biogeography-
based optimisation (BBO) [25] is another population-based optimi-
sation algorithm, based on two main operators, mutation and mi-
gration. Generally, CS has advantages in global exploration, while
BBO has a stronger exploitation ability [2]. Consequently, com-
bining these two algorithms can benefit from both higher explo-
ration and exploitation. In this paper, we present a novel image
thresholding algorithm based on the combination of the two strate-
gies, employing heterogeneous cuckoo search from the CS algo-
rithm and a biogeography-based discovery operator. We employ a
variance-based objective function and demonstrate excellent thresh-
olding performance in comparison with other population-based
algorithms.

The remainder of the paper is organised as follows. Section 2
briefly describes some background on CS and BBO. Section 3 presents
our proposed algorithm, while Section 4 assesses it based on dif-
ferent metrics and in comparison with other algorithms. Section 5
concludes the paper.
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2 BACKGROUND

2.1 Cuckoo search

Cuckoo search (CS) [28] is a population-based metaheuristic algo-

rithm inspired by the breeding behaviour of cuckoos. In CS, each

egg corresponds to a candidate solution x; = (Xi,1, Xi2, ..., Xi N)-
Each candidate solution is updated as

old

new _
i i

0.01u
rew = xl-Old+a(x —xg)®Levy(B) = xfld+T(xfld—xg), (1)

o] #
where @ signifies entrywise multiplication, f§ is the Levy flight ex-
ponent, « is the step size, and x, is the best candidate solution found
so far, while u and v are two random random numbers calculated

as
u ~N(0,0',§), v ~N(0,0'12,), (2)
with
1
ra+psin(z) |7’
U\ TR, , =1, 3)
T[(7)]1p2tP-1/2
where T’ is a standard gamma function.
A discovery operator is employed which is defined as
ew x;jj.d +7.(x1,j (k) = xr2,j(k)) if P > pa
Xij T, old herwise @
X otherwise

Algorithm 1 lists the CS algorithm in the form of pseudo-code.

Input :D: dimensionality of problem, N FEpay: maximum
number of function evaluations, Np: population size

=2 .
Output:x*: best solution

Generate the initial population Pop randomly

Evaluate the objective function for each candidate solution
NFE = Np

while NFE < NFE,x do

for i < 1to Np do

Generate a new candidate solution, x***, using Eq. (1)
Evaluate objective function for xJ***

if f(x]**™) is better than f(x?ld) then

‘ Replace old candidate solution x?ld

with x*"
end

end

NFE =NFE+ N,

fori < 1to Np do

for j «— 1to D do

‘ Generate x'** using Eq. (4)

end

Evaluate objective function for x[***

if f(x"°™) is better than f(xl‘?ld) then

‘ Replace old candidate solution xlf’ld

new

with x]

end

end
NFE = NFE + Np

end
x* « Best candidate solution in Pop
Algorithm 1: Pseudo-code of CS algorithm.
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2.2 Biogeography-based optimisation
Biogeography-based optimisation (BBO) [25] is a population-based
algorithm which simulates island biogeography for optimisation.
Each candidate solution in BBO is called a habitat, and its qual-
ity corresponds to the habitat suitability index (HSI). A candidate
solution can be seen as a set of suitability index variables (SIVs).
In each iteration, the population is sorted based on the objective
function from best to worst and each candidate solution is assigned
to an immigration rate Ax = (1 — NLP)I and an emigration rate

UK = NLPE, where I and E are the maximum immigration and
emigration rates (here I = E = 1), and K is the number of species
of the habitats (K = Np — i) with K for the best candidate solution
being Np — 1, K for the second best candidate solution Np — 2, and
K for the worst candidate solution 0.

BBO has two main operators, migration and mutation. The migra-
tion operator shares information from different candidate solutions,
while the mutation operator alters a single candidate solution.

The BBO algorithm is given in pseudo-code form in Algorithm 2.

Input :D: dimensionality of problem, NFEy,y: maximum
number of function evaluations, Np: population size

5
Output:x*: the best solution

Generate the initial population Pop uniform randomly
Evaluate the objective function for each candidate solution
NFE = Np
while NFE < NFE,,x do
Sort population from best to worst
Assign each candidate solution an immigration rate A; and

emigration rate y;
for i < 1to Np do
for j « 1to D do

if rand < A; then
Select a habitat xg

new _ j.old

xl.,j —xk’j
else

new old
| =
end

for i < 1to Np do
if rand < p; then

‘ Change x]***” by mutation
end

end
Evaluate objective function f(x]***)
NFE =NFE+ N,

Conduct elitism stage

end
x* « best candidate solution in Pop
Algorithm 2: Pseudo-code of BBO algorithm.

3 PROPOSED HCS-BBD ALGORITHM

Inspired by [2], in this paper, we propose a novel multi-level image
thresholding algorithm based on a combination of BBO and CS.
In the following, we first explain the components of our proposed
HCS-BBD algorithm, and then detail its workings.
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(a) Lenna (b) Boat

(c) Peppers

il

(2) 181079 (h) 175043 (i) 101085

(e) House (f) 12003

(d) Goldhill

(j) 147091

(k) 101087

(1) 253027

Figure 1: Test images and their histograms.

3.1 Heterogeneous CS strategy

We employ a heterogeneous CS strategy (HCS) 3, 5] which is based
on a Levy flight distribution and a quantum mechanism. In HCS, a
candidate solution is updated as

old
i
X+ L.(x%;—x

x4 + . (x; — xj) © Levy(f) if% <sr<1

;)ld)
old
x7)

new _
i

x ®)

el 2
ifz <sr<g,

Xi +e.(xg — otherwise

where L = oIn(1/1), € = o*, xg is the best candidate solution found
so far, x is the average of all candidate solutions, and sr and A are
two random numbers between 0 and 1. The updating strategy thus
has three components, one based on a Levy distribution, while the
others are based on a quantum mechanism. This heterogeneous
strategy can generate different candidate solutions with more di-
versification ability.

3.2 Biogeography-based discovery strategy

HCS-BBD uses a biogeography-based discovery (BBD) strategy
to create a new candidate solution. To this end, the population is
sorted from best to sort. Then, an emigration rate is assigned to
each candidate solution as
k
Hie = N_pE' (6)
The BBD strategy for creating a new candidate solution is de-
scribed in Algorithm 3. Candidate solutions with better objective
function values can share more features with others, leading to
enhanced exploitation of the algorithm.

3.3 Representation

The representation determines how a candidate solution is encoded.
In this paper, we employ a one-dimensional array x = [#1, t2, ..., tm]

1925

!d. candidate solution,

Input :D: dimensionality of problem, x°
P,: discovery probability

Output:x"¢": new candidate solution

for j « 1to D do

if rand > P, then
Select a candidate solution with probability o pix
Generate a random number « between 0 and 1

X = axld + (1 - a)x,gff
else

new _ old
Yij o T i

end

end

Algorithm 3: BBD strategy.

whose length is the number of threshold values, where ¢; is the i-th
threshold value. The upper and lower bounds of the search space
are set as 0 and 2" — 1, respectively, along each dimension, where
n is the number of bits representing a pixel.

3.4 Objective function

In this paper, we employ a variance-based objective function to
assess each candidate solution. If the image pixels fall into L levels
and the number of pixels in the i-th level is equal to n;, then the
normalised histogram is obtained as
L
pi =ni/N,p; 20,21?1:1- )
i=1
In bi-level thresholding with threshold ¢, levels [1,.. ., t] levels
will be allocated to class Cy and levels [t +1,..., L] to class Cy. The
optimal value for ¢ is the one that maximises

®)

g = wo(po — pr)® + w1(p — pr)?,
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where pi; is the mean intensity of the entire image

Mt = wopo + w1, @0+ w1 =1, )]
with
k L
Lo = Z ipi/wo and py = Z ipi/wi1. (10)
i=1 i=k+1

This method can be extended for multi-level image thresholding
to find m thresholds as [t1, 2, ..., ] to partition the image into
m classes: Cy for [0,...,t; — 1], C; for [t1,...,t2 — 1], ..., Cpy, for
[tm, - .., t2 — 1]. The objective function then becomes

J=wo(uo — pe)* + 01(y = pe)* + -+ m(pm — )%, (11)

which is the one we use in this paper.

Input :D: dimensionality of problem, NFE;;4y: maximum
number of function evaluations, Np: population
size, Py: discovery probability
=

Output:x™: the best solution

Generate the initial population Pop randomly using
encoding strategy from Section 3.3

Evaluate the objective function for each candidate solution
using Eq. (11)

NFE = Np

while NFE < NFEpgy do

// HCS strategy

for i < 1to Np do

Generate a new candidate solution, x]"** by HCS
strategy using Eq. (5)

Evaluate the objective function f(x]"*") using
Eq. (11)

if f(x1°") is better than f(x°'?) then
old

i

new

‘ replace old candidate solution x?* with x]

end

end

NFE = NFE + Np

// BBD strategy

Sort the population from best to worst

Assign emigration rate y to each candidate solution

for i < 1to Np do

Generate a new candidate solution x]'*" using
Algorithm 3

Evaluate the objective function f(x]"*") using
Eq. (11)

if f(x®™) is better than f(x;’ld) then
old

i

new

‘ replace old candidate solution x?* with x]

end

end

NFE = NFE + Np
end

x* « best candidate solution in Pop
Algorithm 4: HCS-BBD algorithm for multi-level image thresh-

olding.
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3.5 Algorithm

Our proposed HCS-BBD algorithm is designed to find optimal
threshold values for a multi-level image thresholding problem. Al-
gorithm 4 details the workings of HCS-BBD in form of pseudo-code.

4 EXPERIMENTAL RESULTS

We evaluate the performance of our proposed HCS-BBD algorithm
and assess it against a set of other population-based competitors.
To this end, we select five popular images, namely Boats, Peppers,
Goldhill, Lenna, and House, as well as seven commonly employed
images from the Berkley segmentation repository [9], namely 12003,
181079, 175043, 101085, 147091, 101087, and 253027. Figure 1 shows
the images together with their histograms. As we can observe,
different images have different histogram characteristics. Some
such as Lenna have several peaks and valleys, while others such as
101087 have a smoother distribution, whereas e.g. Goldhill has a
histogram with abrupt changes.

We compare our algorithm with a number of other algorithms in-
cluding DE [26], PSO [24], GSA [23], DA [10], SCA [11], MVO [13],
SSA [12], BBO [25], and CS [28]. We select BBO and CS for com-
parison since our algorithm is based on these two. DE and PSO
algorithms are state-of-the-art algorithms, while some others such
as MVO and SSA are among the most recent approaches.

We set the number of thresholds to 5 and 10, and each algorithm
is run 25 times. Statistical results including mean and standard

(a) image (b) manual 1 (c) manual 2 (d) manual 3

(e) manual 4 (f) manual 5

(m) BBO

(n) CS (0) HCS-BBD

Figure 2: Thresholded 101087 images for D = 5 and all algo-
rithms.
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Table 1: Objective function results for all algorithms and images with D = 5.

image DE PSO GSA DA SCA MVO SSA BBO CS HCS-BBD
Boats mean 2090.51 2091.33 2051.32 2091.59 2072.89 2090.11 2086.75 | 2092.14 2092.63 2092.58
std.dev. 1.36 0.79 13.68 0.62 10.64 1.39 3.76 0.49 0.09 0.14
rank 6 5 10 4 9 7 8 3 1 2
Peppers mean 2734.53  2736.24 2688.08 2735.31 2711.20 2734.60 2727.84 | 2737.62 2737.89 2737.98
std.dev. 2.64 1.06 22.34 7.65 11.62 1.71 5.60 0.45 0.21 0.12
rank 7 4 10 5 9 6 8 3 2 1
Goldhill mean 2336.97 2339.61 2291.43 2337.99 2320.71 2338.10 2336.06 | 2339.52 2340.16 2340.23
std.dev. 2.25 0.58 23.37 7.16 13.52 1.22 3.21 1.03 0.25 0.00
rank 7 3 10 6 9 5 8 4 2 1
Lenna mean 2211.60 2214.10 2159.79 2213.88 2193.86 2213.18 2209.45 | 2215.04 2215.52 2215.79
std.dev. 5.08 0.87 23.64 1.15 10.69 1.28 3.72 0.83 0.34 0.15
rank 7 4 10 5 9 6 8 3 2 1
House mean 1867.93 1870.14 1814.89 1870.51 1849.04 1868.56 1863.86 | 1870.97 1871.64 1871.76
std.dev. 2.35 0.79 20.63 1.18 10.96 1.34 4.02 1.36 0.29 0.16
rank 7 5 10 4 9 6 8 3 2 1
12003 mean 2908.91 2910.22 2859.46 2911.68 2885.84 2909.40 2902.54 | 2912.16 2912.52 2912.48
std.dev. 1.97 1.22 21.29 1.01 16.17 1.75 491 0.48 0.19 0.20
rank 7 5 10 4 9 6 8 3 1 2
181079 mean 2342.87 2344.33 229545 234536 2316.30 2342.76  2337.91 | 2346.55 2346.68 2346.71
std.dev. 2.40 1.00 17.20 1.06 16.14 2.16 3.51 0.25 0.17 0.13
rank 6 5 10 4 9 7 8 3 2 1
175043 mean 1313.81 1315.58 1271.83 1315.33 1296.08 1314.08 1311.03 | 1316.20 1316.64 1316.77
std.dev. 2.16 0.62 12.28 1.26 11.34 1.05 2.12 0.73 0.22 0.18
rank 7 4 10 5 9 6 8 3 2 1
101085 mean 3710.66 3710.82 3668.31 3713.60 3692.75 3710.43 3703.37 | 3714.04 3714.72 3714.58
std.dev. 2.63 1.95 16.71 1.05 10.30 2.25 6.53 0.64 0.16 0.24
rank 6 5 10 4 9 7 8 3 1 2
147091 mean 4127.85 4128.63 4082.37 4129.99 4105.02 4127.18 4119.42 | 4130.75 4131.20 4131.11
std.dev. 1.95 1.29 19.46 0.93 13.78 1.88 5.34 0.45 0.12 0.24
rank 6 5 10 4 9 7 8 3 1 2
101085 mean 5353.43 5354.01 5321.87 5354.84 5336.67 5353.11 5349.06 | 5355.26  5355.59 5355.70
std.dev. 1.70 0.88 14.42 0.67 8.82 1.31 3.79 0.50 0.18 0.11
rank 6 5 10 4 9 7 8 3 2 1
253027 mean 1607.39 1609.44 1568.16 1609.25 1591.69 1608.25 1606.73 | 1610.04 1610.49 1610.68
std.dev. 1.89 0.83 18.57 1.45 11.39 1.36 2.85 0.64 0.28 0.09
rank 7 4 10 5 9 6 8 3 2 1
average rank 6.58 4.50 10.00 4.50 9.00 6.33 8.00 3.08 1.67 1.33
overall rank 7 45 10 45 9 6 8 3 2 1

deviation are reported. The population size for all algorithms is
set to 50, while the number of function evaluations (as stopping
criterion) is set to 25,000. In our proposed algorithm, the habitat
modification probability, maximum immigration rate, maximum
emigration rate, and p, are set to 1, 1, 1, and 0.25, respectively,
while for other algorithms, we employed default settings from the
cited publications.

First, we assess the performance of HCS-BBD visually on 101087
as a representative image and show the segmented images for
all algorithms in Figure 2. Since the image is from the Berkeley
segmentation repository [9], it comes with several (often quite
different) manual segmentations, which are also shown in Figure 2.
As we can see, HCS-BBD can yield a better segmentation which is
for example noticeable in the lake area of the image which shows
less noise for HCS-BBD compared to the other algorithms.

Table 1 shows the objective function results for D = 5. As we
can see from there, HCS-BBD is top ranked for 8 of the 12 images,

and ranked second for the others resulting in an average rank of
1.33, thus clearly giving the best performance of all methods. The
average ranks for CS and BBO are 1.67 and 3.08, respectively. As is
evident, our proposed method can lead to a significant improvement
over both.

For D = 10, the results are given in Table 2. HCS-BBD ranks first
for 11 of the 12 images, leading to a clear first overall rank. CS is
ranked second, yet the margin between the average ranks of CS
and HCS-BBD is wide.

Feature similarity index measure (FSIM) [30] is a popular image
quality measure in the literature. Tables 3 and 4 show FSIM results
for D = 5 and D = 10, respectively. As can be seen from there, for
both cases HCS-BBD clearly outperforms all other algorithms.

Last not least, we perform a statistical comparison of HCS-BBD
with the other algorithms. In particular, we conduct a Wilcoxon
statistical signed rank test at 5% significance level whose results
are given in Table 5. As we can see, in all cases and based on
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Table 2: Objective function results for all algorithms and images with D = 10.

image DE PSO GSA DA SCA MVO SSA BBO CS HCS-BBD
Boats mean 2143.96 2146.60 2124.61 2145.46 2125.86 2145.95 2143.65 | 2149.27 2150.61 2151.45
std.dev. 3.51 1.48 9.11 3.17 4.87 2.07 2.30 1.33 1.05 0.57
rank 7 4 10 6 9 5 8 3 2 1
Peppers mean 2785.77 2788.29 2766.04 2786.31 2769.47 2787.93 2785.27 | 2791.46 2792.82 2793.71
std.dev. 3.24 1.88 7.20 3.76 8.03 3.55 2.92 1.44 1.00 0.47
rank 7 4 10 6 9 5 8 3 2 1
Goldhill mean 2398.78 2400.78 2380.23 2397.80 2378.12 2400.02 2398.35 | 2403.54 2403.39 2405.74
std.dev. 2.42 1.30 6.72 3.82 6.36 1.84 2.35 1.29 1.59 0.89
rank 6 4 9 8 10 5 7 2 3 1
Lenna mean 2257.22  2260.03 2233.29 2256.26 2243.14 2258.37 2256.77 | 2261.95 2262.43 2264.56
std.dev. 2.36 1.45 11.87 4.53 4.92 1.76 2.14 1.20 1.30 0.63
rank 6 4 10 8 9 5 7 3 2 1
House mean 1931.57 1933.83 1908.33 1932.89 1913.33 1932.61 1930.08 | 1936.35 1937.55 1938.36
std.dev. 2.81 1.69 8.72 2.92 8.58 2.28 2.31 1.68 0.68 0.39
rank 7 4 10 5 9 6 8 3 2 1
12003 mean 2978.48 2981.24 2955.05 2978.26 2958.11 2978.95 2977.79 | 2983.72  2985.82 2986.26
std.dev. 2.34 2.03 6.98 4.15 5.99 1.92 3.13 1.30 0.70 0.55
rank 6 4 10 7 9 5 8 3 2 1
181079 mean 2402.08 2404.25 2382.04 2402.45 2384.93 2403.02 2401.28 | 2407.26 2408.33 2409.24
std.dev. 2.59 1.80 9.73 4.30 6.42 2.25 3.37 1.22 0.94 0.55
rank 7 4 10 6 9 5 8 3 2 1
175043 mean 1361.75 1363.69 1340.69 1360.51 1347.27 1362.79 1361.92 | 1365.37 1366.14 1367.56
std.dev. 2.38 1.17 9.48 4.23 5.46 1.07 1.96 0.93 1.05 0.40
rank 7 4 10 8 9 5 6 3 2 1
101085 mean 3803.32 3803.59 3777.99 3801.87 3786.02 3803.00 3798.19 | 3807.75 3810.51 3810.50
std.dev. 3.48 1.97 9.84 4.25 6.50 3.00 3.37 1.26 0.76 0.65
rank 5 4 10 7 9 6 8 3 1 2
147091 mean 4190.31 4191.83 4169.77 4189.45 417492 4190.83 4187.98 | 4195.50 4197.26 4197.97
std.dev. 3.37 2.14 7.74 3.30 495 2.59 3.15 1.55 0.66 0.64
rank 6 4 10 7 9 5 8 3 2 1
101085 mean 5404.37 5405.80 5390.91 5404.57 5391.97 5405.76 5403.52 | 5408.25 5409.29 5409.87
std.dev. 2.15 1.19 5.05 3.11 4.07 1.46 2.07 0.86 0.61 0.37
rank 7 4 10 6 9 5 8 3 2 1
253027 mean 165496 1657.94 1637.32 1655.25 1640.48 1656.84 1655.08 | 1660.07 1660.36 1661.79
std.dev. 2.84 1.50 7.95 2.92 5.44 1.82 1.95 1.07 1.02 0.32
rank 8 4 10 6 9 5 7 3 2 1
average rank 6.58 4.00 9.92 6.67 9.08 5.17 7.58 2.92 2.00 1.08
overall rank 6 4 10 7 9 5 8 3 2 1
both objective function and FSIM measures, the obtained p values REFERENCES

are below 0.05, meaning that our proposed algorithm statistically
significantly outperforms the other methods.

5 CONCLUSIONS

In this paper, we have proposed a novel multi-level image thresh-
olding algorithm, HCS-BBD, based on cuckoo search (CS) and
biogeography-based optimisation (BBO) leveraging the exploration
ability of CS and the exploitation ability of BBO. Our HCS-BBD
algorithm encodes the threshold values as candidate solution, and
uses a variance-based objective function. Compared with nine other
population-based optimisation algorithms, an extensive set of ex-
periments show HCS-BBD to outperform them and to deliver ex-
cellent multi-level thresholding performance. In future work, we
intend to extend the algorithm to other domains such as neural
network training, while other objective functions are also under
investigation.
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Table 3: FSIM results for all algorithms and images with D = 5.
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