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ABSTRACT
Gradient-free stochastic optimization algorithms are well-known
for finding suitable parameter configurations over independent runs
ubiquitously. Attaining low variability of convergence performance
through independent runs is crucial to allow further generalization
over distinct problem domains. This paper investigates the perfor-
mance of a differential particle system in stabilizing a nonlinear
inverted pendulum under diverse and challenging initial condi-
tions. Compared to the relevant algorithms in the literature, our
experiments show the feasibility of achieving lower convergence
variability to stabilize a nonlinear pendulum over independent runs
and initial conditions within a reasonable computational load.
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1 INTRODUCTION
Proportional-Integral-Derivative (PID) is a widely known feedback
loop mechanism to control industrial systems. With origins in
the nineteenth century, tuning the gain parameters of a PID sys-
tem is known to be challenging due to nonlinearities, which have
a considerable effect on control performance adaptation to new
conditions[1, 2, 4].
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The most commonly used methods are the Ziegler-Nichols (Z-N)
[37], with its origins in the 40’s, and the Cohen-Coon[11] algo-
rithms. However, as a matter of practice, the obtained parameters
by these methods usually need further re-tuning to be used in in-
dustrial practice. For this reason, approaches based on optimization
have emerged in the literature.

Gradient-free stochastic optimization schemes are robust and
perform well in parameter tuning across independent runs, being
Genetic Algorithms (GA) the most popular among evolutionary
computing methods. One of the seminal studies is the work by
Wang and Kwok[33, 34], showing its potential to deal with nonlin-
earities and appeal to industrial practice. Particle Swarm Optimiza-
tion (PSO)[13] is another well-known algorithm that is inspired
by swarm behavior. Recently, Chen et. al.[5] and Belkadi et. al.[3]
studied the performance of PSO variants in tuning PID systems’
parameters and recommended its use to achieve global optima and
faster convergence. However, one of the critical challenges in PSO
is how to avoid the low variability of convergence performance and
high computational load over independent runs, which is crucial to
allow the efficient generalization over different problem domains.

Generally speaking, high variability of convergence usually oc-
curs when solutions stagnate in local optima, which occurs when
generated solutions are not comparatively better than current sat-
isfactory solutions. This problem occurs due to the inherent nature
of PSO to sample the search space without considering the source
of promising solutions and the inability to evaluate how success-
ful sampled solutions are. Although the stagnation problem has
called the attention of the mathematical benchmarking commu-
nity under well-established synthetic functions[6, 8, 10, 12, 15–
17, 29, 35, 36], rendering both generalization and adaptive param-
eter setups[9, 19, 30, 32](see the references therein), the study of
stagnation in swarm-based systems for tuning of PID control tai-
lored to inverted pendulum has received little attention. In this
paper, inspired by stagnation-free schemes in swarm systems[10],
we propose a mechanism combining the selection pressure and the
archive of alternative solutions in a differential particle system[18],
and evaluate its effectiveness in stabilizing a nonlinear inverted
pendulum under diverse initial conditions. We study the effect of
population size and weights on local and global interpolation vec-
tors and compare its performance with relevant algorithms in the
literature. Our computational experiments show that the feasibility
to compute lower variability of convergence over independent runs
within a reasonable computational load.

In the following sections, we describe our proposed approach,
experiments and discuss our results.
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2 PROPOSED APPROACH
In this section, we describe the central tenets of our approach.

2.1 Differential Particle Scheme (DPS)
Basically, we focus in tackling the well-known gradient-free opti-
mization problem.

Minimize
𝑥

𝐹 (𝑥) subject to 𝑥 ∈ X, (1)

in 𝐹 denotes the cost function, X denotes the search space, and 𝑥
denotes the search variable. We propose tackling (1) by iterative
sampling, as follows

𝑥𝑡+1 =
{
𝑢𝑡 , if 𝐹 (𝑢𝑡 ) ≤ 𝐹 (𝑥𝑡 )
𝑥𝑡 , otherwise

(2)

𝑢𝑡 = 𝑥𝑟𝑡 + 𝑣𝑡+1 (3)

𝑣𝑡+1 = 𝜔𝑣𝑡 + 𝑐1𝑟1 (𝑝𝑏𝑒𝑠𝑡𝑡 − 𝑥𝑟𝑡 ) + 𝑐2𝑟2 (𝑔𝑏𝑒𝑠𝑡𝑡 − 𝑥𝑟𝑡 ) (4)

𝑥𝑟𝑡 ∈
{

P𝑡 , if 𝑞𝑡 ≤ 𝑄

A𝑡 , otherwise
(5)

A𝑡+1 =
{

P𝑡 , if 𝑡 = 0
A𝑡 ∪ {𝑢𝑡 }, if 𝑡 > 0 and 𝐹 (𝑢𝑡 ) ≤ 𝐹 (𝑥𝑡 )

(6)

𝑞𝑡+1 =
{

0 if 𝐹 (𝑢𝑡 ) ≤ 𝐹 (𝑥𝑡 )
𝑞𝑡 + 1, otherwise (7)

where
• 𝑡 is the subscript considering iteration count;
• 𝑥𝑡 is the solution at iteration 𝑡 ;
• 𝑣𝑡 is the velocity vector at iteration 𝑡 ;
• 𝑐1, 𝑐2 are acceleration constants;
• 𝑟1, 𝑟2 are random numbers uniformly distributed at𝑈 (0, 1);
• 𝜔 is the inertia weight;
• pbest is best solution up to iteration 𝑡 ;
• gbest is the best solution overall all the population;
• P is the population set (𝑥𝑡 ∈ P ),
• 𝐹 is the cost function to be minimized.

Basically, the above is based population-based stochastic sam-
pling of solutions to achieve global optima over the search space.
The subscrips in (2) and (5) are inspired by the selection mecha-
nisms of differential evolution[10, 28], whereas (4) is inspired by
the behavior of particle swarms[13]. Also, in the above, the gradient
of the cost function is unused, and solutions are updated by inter-
polating local vectors pbest and global vectors gbest. In terms of
particle swarm, local vectors point towards the personal best, while
global vectors point towards the global best in the population.

Furthermore, in (5), 𝑥𝑟𝑡 denotes a reference vector for sampling,
𝑞𝑡 represents the accumulated count of unsuccessful solutions at
iteration 𝑡 ∈ [𝑇 ], 𝑢𝑡 is the trial solution, Q is a user-defined stagna-
tion threshold metric, and A is an archive (set) of recently updated
solutions. Here, the initial configuration of the set A is a copy of
the population for 𝑡 = 0, and successful solutions replace oldest
solutions, thus, |A | = |P |. A trial solution 𝑢𝑡 is successful whenever
𝑓 (𝑢𝑡 ) ≤ 𝑓 (𝑥𝑡 ) holds, thus the stagnation count 𝑞𝑡 is set at zero
whenever the successful trial 𝑢𝑡 is successful.

beltsprocket wheel

track

pendulum arm

cart

Figure 1: Basic concept of an inverted pendulum.

Figure 2: Inverted pendulum.

Generally speaking, the basic concept of our proposal includes
integrating (1) the differential evolution selection mechanism in
particle swarms, and (2) the archive of successful vector referents.
The first concept considers the generation of trial vectors 𝑢𝑡 and
updating the position of sampled vectors according to how the
current solutions are improved. The second concept considers the
use of different sources to generate new trial vectors: in one hand,
the population, and in other hand, an archive of successful trial
vectors. By using the above described concepts, it becomes possible
to sample new solutions from either in the population or from the
archive of successful solution trials, in which the archive is updated
whenever the solution trials lead to improved positions.

2.2 Inverted Pendulum
We aim to tackle the control of a nonlinear inverted pendulum as
shown by Fig. 1 to reach stabilization at 𝜃 = 0 given a starting
position 𝜃𝑜 . The governing equations of the nonlinear pendulum
model can be obtained from the Newton’s second law:

(𝑚 +𝑀) ¥𝑟 + 𝑏 ¤𝑟 +𝑚𝐿 ¥𝜃𝑐𝑜𝑠𝜃 −𝑚𝐿 ¤𝜃2𝑠𝑖𝑛𝜃 = 𝑓 , (8)

(𝐼 +𝑚𝐿2) ¥𝜃 −𝑚𝑔𝐿𝑠𝑖𝑛𝜃 +𝑚𝐿¥𝑟𝑐𝑜𝑠𝜃 + 𝑑 ¤𝜃 = 0, (9)
where

• 𝑚 is the pole mass,
• 𝑀 is the cart mass,
• 𝐿 is the pole length,
• 𝑔 is the gravity constant,
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Figure 3: Basic block diagram of the control scheme.

• 𝐼 is the mass moment of inertia of the pendulum,
• 𝑏 is the cart friction coefficient,
• 𝑑 is the pendulum damping coefficient,
• 𝑓 is the dragging force,
• 𝑟 is the cart position, and
• 𝜃 is the pendulum angle.

The above-described denote the essential elements of a track-
enabled inverted pendulum system as Fig. 2 shows. Our objective
is to stabilize the pendulum at 𝜃𝑠 = 0 and cart position 𝑟𝑠 = 0 given
a starting position 𝜃𝑜 . For simplicity and without loss of generality,
we design two independent PID controllers and sum their control
outputs to render the control signal to the inverted pendulum as
Fig. 3 shows. Thus, the continuous form of the PID controllers is
given by the following:

𝜇 (𝑡) = 𝜇1 (𝑡) + 𝜇2 (𝑡) (10)
Thus the control signals are computed from the following

𝜇1 (𝑡) = 𝑘𝑐𝑝𝑒𝑐 (𝑡) + 𝑘𝑐𝑖
∫ 𝑡

0
𝑒𝑐 (𝑡)𝑑𝑡 + 𝑘𝑐𝑑

𝑑𝑒𝑐 (𝑡)
𝑑𝑡

(11)

𝑒𝑐 (𝑡) = 𝑟𝑠 (𝑡) − 𝑟 (𝑡) (12)
, where 𝜇1 (𝑡) is the control signal derived from the error at the
cart position, 𝑒𝑐 (𝑡) represents the cart tracking error, 𝑘𝑐𝑝 is the
proportional gain, 𝑘𝑐

𝑖
is the integral gain, 𝑘𝑐

𝑑
is the derivative gain,

𝑟𝑠 (𝑡) is the desired cart position, and 𝑟 (𝑡) is the actual measurement.

𝜇2 (𝑡) = 𝑘
𝑝
𝑝𝑒𝑝 (𝑡) + 𝑘

𝑝

𝑖

∫ 𝑡

0
𝑒𝑝 (𝑡)𝑑𝑡 + 𝑘𝑝𝑑

𝑑𝑒𝑝 (𝑡)
𝑑𝑡

(13)

𝑒𝑝 (𝑡) = 𝜃𝑠 (𝑡) − 𝜃 (𝑡) (14)
, where 𝜇2 (𝑡) is the control signal derived from the error in the pole
position, 𝑒𝑝 (𝑡) represents the pole tracking error, 𝑘𝑝𝑝 is the propor-
tional gain, 𝑘𝑝

𝑖
is the integral gain, 𝑘𝑝

𝑑
is the derivative gain, 𝜃𝑠 (𝑡)

is the desired pole position, and 𝜃 (𝑡) is the actual measurement.

2.3 Encoding and Cost Function
The six gains related to the PID control gains in the cart and the
pole become the search variables, and the cost function is defined
by the sum of squared errors. Thus, the six-tuple consists of the
following:

𝑥 = (𝑘𝑐𝑝 , 𝑘𝑐𝑖 , 𝑘
𝑐
𝑑
, 𝑘

𝑝
𝑝 , 𝑘

𝑝

𝑖
, 𝑘

𝑝

𝑑
), (15)

and the cost function is defined by the following:

𝐹 (𝑥) =
∫ 𝑇

0
𝑒2𝑐 (𝜏)𝑑𝜏 +

∫ 𝑇

0
𝑒2𝑝 (𝜏)𝑑𝜏 (16)

3 COMPUTATIONAL EXPERIMENTS
This section describes our computational experiments and obtained
results in evaluating the effectiveness of our proposed approach.

3.1 Pendulum Settings
We implemented our algorithms using Matlab. We considered the
following parameters

• mass of the inverted pendulum𝑚= 0.23 kg
• cart mass𝑀= 2.4 kg,
• 𝐿= 0.4 m,
• 𝑔= 9.81 m/s2,
• cart friction coefficient 𝑏= 0.05 Ns/m,
• pendulum damping coefficient 𝑑= 0.005 Nms/rad,
• constant 𝐼= 0.099 kgm2,

the above configuration is aligned to a real-world pendulum system
as shown by Fig. 2. The desired cart position is set at 𝑟𝑜= 0m. Differ-
ential equations of the inverted pendulum are solved numerically
by using Runge-Kutta with simulation time 𝑇 = 100 and step time
at 0.01.

3.2 Initial Conditions
In a set of experiments, we first studied the effect of a relevant set of
parameters on convergence behaviour over 30 independent runs. As
such, we used Q = 200 and 5000 function evaluations. Here, the ini-
tial angle of the pendulum was set to 𝜃𝑜 = {0.05, 0.2, 0.35, 0.5, 0.65}
rad, and evaluated the following variants:

• DPS1. Population size |P | = 10, 𝜔 = 0.7, 𝑐1 = 0.5, 𝑐2 = 1.
• DPS2. Population size |P | = 50, 𝜔 = 0.7, 𝑐1 = 0.5, 𝑐2 = 1.
• DPS3. Population size |P | = 100, 𝜔 = 0.7, 𝑐1 = 0.5, 𝑐2 = 1.
• DPS4. Population size |P | = 10, 𝜔 = 0.2, 𝑐1 = 0.5, 𝑐2 = 1.
• DPS5. Population size |P | = 10, 𝜔 = 0.7, 𝑐1 = 1.5, 𝑐2 = 1.

The above set aims to combine distinct population size and dis-
tinct weight on local and global interpolations. Fig. 4 shows the
convergence behavior and the standard deviation of the conver-
gence of the cost function over 30 independent runs. By observing
Fig. 4, we can note that across different initial conditions of the
pendulum, relatively high population sizes |P | = 50, 100 are prefer-
able for faster convergence. This observation is due to (4) using
the interaction of the population to sample new solutions; thus,
a higher number of solutions facilitates providing promising so-
lutions in the search space. It is also possible to observe sudden
decreases in the fitness function, in particular in Fig. 4-(a)-(c). We
believe this phenomenon occurs due to the extended archive (6) of
potential solutions, which enables providing a source of successful
and promising solutions. Investigating a different set of population
sampling schemes and archive formation is likely to improve the
performance of our approach.
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(a) 𝜃𝑜 = 0.05 rad. (b) 𝜃𝑜 = 0.2 rad.

(c) 𝜃𝑜 = 0.35 rad. (d) 𝜃𝑜 = 0.5 rad.

(e) 𝜃𝑜 = 0.65 rad.

Figure 4: Mean convergence over 30 independent runs of our approach under different inverted pendulum conditions ad parameter schemes.

3.3 Algorithm Benchmarks
Since our proposed scheme extends the sampling schemes from
Particle Swarm Optimization (PSO) and Differential Evolution (DE),
we compared the performance of our proposed approach against
the following related and well-known algorithms:

• Differential Evolution (DE)[7],
• Particle Swarm with Fitness Euclidean Ratio (FER)[14],
• Particle Swarm Optimization (PSO)[13],
• Rank-Based Differential Evolution (RBDE)[31],
• Strategy-Adaptation Differential Evolution (SADE)[27],
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Performance validation and benchmarks with the recently pub-
lished works in mathematical function optimization using the well-
established datasets from CEC and GECCO from recent years are
out of the scope of this paper. For experiments, we set the initial an-
gle of the pendulum to 𝜃𝑜 = 0.4 rad, which is reasonably challenging
for any control system.

Fig. 5 shows an example of the converged stabilization behaviour,
here variables such as cart position 𝑟 , pendulum state 𝜃 and control
signals𝑢 are plotted as a function of time. In this figure, the inverted
pendulum stabilizes at around time step 30. The reader may note
the quick transition from the initial conditions to the stabilization
criteria at 𝜃 = 0 rad.

Due to the stochastic nature of the algorithms mentioned above,
we used 30 independent runs. Based on our observations in the
previous section, parameters and settings in the algorithm were set
as follows:

• The proposed algorithm used the following parameters 𝜔 =
0.7, 𝑐1 = 0.5, 𝑐2 = 1, population size |P | = 50, Q = 200, and
200 generations.

• Particle Swarm with Fitness Euclidean Ratio (FER)[14] and
Particle Swarm Optimization (PSO) used similar parameters
and scaling factors.

• Differential Evolution (DE) and Rank-Based Differential Evo-
lution (RBDE)[31] used the DE-current-to-best/2 mutation
strategy with scaling factors 𝐹1 = 𝐹2 = 1.5 and crossover
probability 𝐶𝑅 = 0.5.

• The coefficient 𝛽 involved in theWhitley distribution scheme
in Rank-Based Differential Evolution (RBDE) is set as 𝛽 = 2.

• The Strategy-Adaptation Differential Evolution (SADE)[27]
used the default 4 mutation strategies: (1) DE/rand/1, (2)
DE/rand/2, (3) DE/current-to-rand/2 and (4) DE/rand-to-
best/, each of which used the default parameters 𝜇𝐹 = 𝜇𝐶𝑅 =

0.5 and 𝜎 = 0.1 at initialization.
Our crucial motivation behind using the above-described set is to

evaluate the convergence under a restricted computational budget,
which implies the responsiveness for real-time tasks and the fair
comparison with relevant schemes in the literature. Fine-tuning
the above-described parameters is out of the scope of this paper
and left for future work in our agenda.

3.4 Comparison Results
Fig. 6 shows the convergence behaviour and standard deviation of
the convergence of the cost function over 30 independent runs. Also,
Fig. 7 shows the statistical significance test and p-values based on
theWilcoxon rank-sum test at 5% significance level. Cells with ’+/=/-
’ denote instances where an algorithm in the row is significantly
better/similar/worse to an algorithm in the column. By observing
at the results of Fig. 6 and Fig. 7, we observe the following facts:

• The y-axis of both Fig. 6 and Fig. 7 are in log-scale, and
as such, our proposed approach offers similar performance
compared to advanced sampling mechanisms such as the
multiple strategies with adaptive parameter tuning of SADE
and the implicit neighborhood formation in FERPSO.

• The best performance can be obtained in about 100 genera-
tions, which is relatively fast for tasks requiring real-time
performance .

(a) Cart Position

(b) Pendulum State

(c) Control

Figure 5: Cart position, pendulum state and control as a function of time.

• Compared to the conventional frameworks, our proposed
approach decreased the standard deviation over independent
runs consistently. This observation implies reaching the op-
timal solutions under independent and distinct initialization
conditions.

• We can confirm that the proposed approach avoids stagna-
tion at early iterations, whereas the standard PSO portrays
higher variability of converged solutions, implying that stag-
nation occurs despite having independent runs. We believe
the reason of avoiding stagnation is due to the ability of
our approach to include a selection mechanism as well as
the archive of potential referential vectors, which enables to
consider successful trial vectors whenever the accumulated
stagnation counter achieves higher values.

The above observations confirm the feasibility of using a reason-
able computational load to achieve competitive fitness convergence
and low variability of convergence over independent runs in chal-
lenging stabilization problems of nonlinear inverted pendulum
systems. This fact implies the possibility of enhancing the perfor-
mance by adaptive sampling schemes[19, 20, 23] and knowledge
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(a) Mean

(b) Standard Deviation

Figure 6: Mean and standard deviation of convergence behaviour of the evaluated algo-
rithms over 30 independent runs.

acquisition through graphs[22, 25, 26]. We believe our results of-
fer new possibilities to build stagnation-free nature-inspired PID
tuning algorithms useful for control and industrial practice. Inves-
tigating the performance over nonlinear control problems, such
as robot and vehicle control[2, 21, 24], and mathematical function
optimization from the relevant literature is our agenda.

4 CONCLUSION
Wehave proposed a new gradient-free optimization algorithm based
on a particle swarm scheme with an archive-based selection mech-
anism and evaluated its effectiveness in stabilizing a nonlinear
inverted pendulum under challenging conditions. Our results show
the efficiency of achieving competitive fitness convergence and low
variability of performance over independent experiment runs in
challenging stabilization conditions of a nonlinear inverted pendu-
lum system. Our future work aims at evaluating adaptive forms of
sampling over a large number of nonlinear control problems.
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