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ABSTRACT
The Self-Organizing Migrating Algorithm (SOMA) is enjoying a re-
newed interest of the research community, following recent achieve-
ments in various application areas and renowned performance com-
petitions. In this paper, we focus on the importance and effect of
the perturbation operator in SOMA as the perturbation is one of
the fundamental inner principles of SOMA. In this in-depth study,
we present data, visualizations, and analysis of the effect of the per-
turbation on the population, its diversity and average movement
patterns. We provide evidence that there is a direct relation between
the perturbation intensity (set by control parameter prt) and the
rate of diversity loss. The perturbation setting further affects the
exploratory ability of the algorithm, as is demonstrated here by
analysing the parameter space coverage of the population. We aim
to provide insight and explanation of the impact of perturbation in
SOMA for future researchers and practitioners.

CCS CONCEPTS
• Computing methodologies → Continuous space search; •
Mathematics of computing→Evolutionary algorithms; •The-
ory of computation→ Bio-inspired optimization.
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1 INTRODUCTION
The original self-organizing migrating algorithm (SOMA) was in-
troduced by Zelinka in 2000 [17],[15]. It fits into the category of
swarm intelligence [6] based metaheuristic algorithms alongside
Particle swarm optimization [8] and Ant colony optimization [5],
preceding the modern era boom of swarm algorithms [10] that has
attracted criticism from part of the scientific community [13].

SOMA and its modifications have been proven very effective in
various applications [9], including complex problems in the areas
of discrete [2] and multi-objective [7] optimization attracting the
general attention. In 2016 a book has been published [1] that details
various applications of SOMA including chaos and complex systems,
financial modeling or large-scale optimization.

More recently two SOMA variants, namely SOMA T3A [3] and
SOMA PARETO [14] ranked 4th and 6th in the IEEE CEC 100 digit
challenge [12] underlining the renaissance of SOMA algorithm.

Despite the renewed popularity of the algorithm and the broad
spectrum of successful applications, the inner dynamics of SOMA
have rarely been studied in detail. This study aims to fill part of
this research gap by focusing on the perturbation operator and
its relation to the population diversity, movement patterns, and
overall fitness landscape coverage, providing useful insight for
future researchers and users of SOMA.

The rest of the paper is structured as follows: In the follow-
ing section, the SOMA algorithm is introduced. Section 3 details
the perturbation operator in SOMA. The methodology for popula-
tion diversity calculation is described alongside used benchmark
functions in section 4. The main experimental part is presented in
section 5. The paper concludes with the discussion of the results.

2 SELF-ORGANIZING MIGRATING
ALGORITHM (SOMA)

SOMA is a population-based metaheuristic method that utilizes
the traditional crossover and mutation operations in a modified
manner simulating a social group of individuals.

In the original and most common SOMA variant called All-to-
One [17],[15], [1], which is the focus of this study, the algorithm
follows these steps: At the start of each iteration (called migration
loop; ML) a Leader is selected based on the fitness. The fittest
individual becomes the leader. Each remaining individual then
moves in the direction towards the Leader in the search space. The
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movement consists of jumps determined by the Step parameter until
the individual reaches the final position given by the PathLength
parameter.

Each step is evaluated using the objective function, and the best
position (including the initial position of a given individual) is
chosen as the new position of the individual in the next migration
loop. The exact position of each step is calculated according to (1).

𝑥𝑘+1𝑖, 𝑗 = 𝑥𝑘𝑖,𝑗 + (𝑥𝑘𝐿,𝑗 − 𝑥𝑘𝑖,𝑗 ) · 𝑡 · 𝑃𝑅𝑇𝑉𝑒𝑐𝑡𝑜𝑟 𝑗 (1)

Where 𝑥𝑘+1
𝑖, 𝑗

is the new position of i-th solution (for iteration
k+1) for dimension j, and 𝑥𝑖, 𝑗 is the current position of the i-th solu-
tion. The 𝑥𝐿,𝑗 represents a position of a leader (the leader selection
depends on the used SOMA strategy). Parameter t represents steps
from i-th solution to the leader. Solution i is migrating, by discrete
steps, and the best-found solution on t-th position is propagated
into a new iteration of the algorithm. The t parameter is generated
in a range starting from 0 to PathLength with step size step.

The 𝑃𝑅𝑇𝑉𝑒𝑐𝑡𝑜𝑟 𝑗 is generated for each new t step. This vector
determines which dimensions will be changed in a particular step
t. In other words, in which dimensions the solution will “head”
towards the leader position or not. The 𝑃𝑅𝑇𝑉𝑒𝑐𝑡𝑜𝑟 𝑗 consists only
of values 0 or 1. These values are generated based on the value of prt
parameter; the process is detailed in equation (2), where the rand is
a pseudo-random number from a uniform distribution within the
range of 0 to 1.

𝑃𝑅𝑇𝑉𝑒𝑐𝑡𝑜𝑟 𝑗 =

{
𝑖 𝑓 𝑟𝑎𝑛𝑑 𝑗 < 𝑝𝑟𝑡, 1
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒, 0

(2)

3 THE PERTURBATION OPERATOR IN SOMA
A perturbation is an essential operation in the SOMA equation (1). It
represents the process of random mutation and is controlled by the
predefined prt parameter. The value range of prt is from 0 to 1. The
perturbation vector PRTVector is constructed according to the rules
described in the previous section. However, in the initial SOMA
proposal [17] the PRTVector was constructed for each individual
at the start of its movement, leading to a linear trajectory of the
movement. Illustration of the initial PRTVector implementation (in
2D) is given in Fig. 1.

Figure 1: The original principle of perturbation in SOMA,
(active individual red, leader green)

Later, the implementation of PRTVector has been changed [16]. A
new PRTVector is constructed before each step of a given individual
and further, as a rule, there has to be at least one zero in the vector.
This change of implementation significantly altered the movement
pattern of the individuals as is depicted in Fig. 2.

Figure 2: The modified principle of perturbation in SOMA,
(active individual red, leader green)

With the updated PRTVector construction rule it is no longer
possible for the individual to follow a direct linear path towards the
Leader, but it is forced to explore the search space in series of steps
in different directions while following the general direction vector
towards the leader (as exampled by red and blue paths in Fig. 2.).
It needs be stressed at this point, that the updated PRTVector rule
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also significantly alters the impact of the PathLength parameter, as
the individual trajectory is now less likely to cross the position of
the leader and the distance between the leader and the last step
of the individual movement trajectory is smaller. In other words,
in original SOMA the individual‘s path would typically end way
beyond the leader (for PathLength = 3) while in the updated scenario,
it is not the case anymore.

The modified PRTVector implementation has led to significantly
improved performance of SOMA [1]. The suggested default value
for prt is near 0.1 as described in [15]. However, a higher value is
suitable for certain problem types [1].

In Fig. 3 we illustrate an experiment of the area possibly covered
by 100 repeated individual movements according to SOMA rules
from a fixed start point (blue dot, positioned at {1,1}) towards a
leader (red dot, positioned at {5,5}) for prt = 0.1. Step = 0.11 and
PathLength = 3 (as suggested by the authors of SOMA [15], [1]).
The figure depicts 100 paths in an overlay. Similar experiment for
prt = 0.8 is illustrated in Fig. 4.
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Figure 3: Area coverage simulation in 2D, prt = 0.1; 100 runs

The experiment shows that the area the individual can theoreti-
cally cover with its movement is significantly larger for the higher
value of prt. The movement for prt = 0.1 is very limited. One of
the reasons is that following the “at least one zero in PRTVector”
condition it is extremely likely that the individual will not move at
all in a given step (a zero-filled PRTVector is generated). With in-
creasing the dimensionality of the problem, this situation becomes
less likely. Therefore, it might be advisable to avoid small prt values
for low-dimensional problems regardless of the complexity of the
search space.

To illustrate this point, we present the same experiment in 3D.
Given in Fig. 5 is the situation for prt = 0.1 and in Fig. 6 for prt
= 0.8. With one extra dimension to use, the individuals seem to
be missing fewer steps in the prt = 0.1 scenario. The area covered
for prt = 0.8 nicely demonstrates the tendency of the individual to
follow the general direction towards the leader.

Following this initial experiment that served mainly to illustrate
the movement patterns and area coverage of individuals under
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Figure 4: Area coverage simulation in 2D, prt = 0.8; 100 runs

Figure 5: Area coverage simulation in 3D, prt = 0.1; 100 runs

significantly different prt values, we continue with a more detailed
experiment, focusing on the diversity of the population.

4 METHODOLOGY
In order to proceed with further experiments, it is necessary to
establish in this section the methodology used in this paper, notably
the method of diversity quantification and benchmark functions
used for the simulations.

4.1 Diversity measure
We use the measure introduced in [11] to quantify the population
diversity. The diversity value is based on the sum of deviations (3)
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Figure 6: Area coverage simulation in 3D, prt = 0.8; 100 runs

of individual’s components from their corresponding means (4). For
further clarity, in the experimental section, the value is presented as
a relative percentage to a theoretical maximal value of the diversity
(subject to dimensionality and bounds of the search space).

𝑃𝐷 =

√√√√
1
𝑁𝑃

𝑁𝑃∑
𝑖=1

𝐷∑
𝑗=1

(𝑥𝑖, 𝑗 − 𝑥 𝑗 )2 (3)

𝑥 𝑗 =
1
𝑁𝑃

𝑁𝑃∑
𝑖=1

𝑥𝑖, 𝑗 (4)

Where i is the population member iterator, and j is the vector
component iterator.

4.2 Fitness landscapes
A set of four very well established test functions [4] was used
in the following experiments. The Sphere function represents a
simple unimodal problem, while Rosenbrock function is a more
challenging fitness landscape in a higher dimension and further
Rastrigin and Schwefel functions represent more complex highly
multi-modal landscapes.

Given that this study is not focused on the performance of the
algorithm, using more complex functions (e.g. the IEEE CEC bench-
mark functions, with rotations, shifts etc.) would be disadvanta-
geous. Using the above described simple functions allows better
understanding of the influence of the control parameter change on
the population dynamic.

Sphere function:

𝑓 (𝑥) =
dim∑
𝑖=1

𝑥2𝑖 (5)

Search Range: [-100,100]D; Glob. opt. pos.: [0]D

Rosenbrock function:

𝑓 (𝑥) =
dim−1∑
𝑖=1

100(𝑥2𝑖 − 𝑥𝑖+1)2 + (1 − 𝑥𝑖 )2 (6)

Search Range: [-10,10]D; Glob. opt. pos.: [0]D

Rastrigin function:

𝑓 (𝑥) = 10 dim+
dim∑
𝑖=1

𝑥2𝑖 − 10 cos(2𝜋𝑥𝑖 ) (7)

Search Range: [-5.12,5.11]D;; Glob. opt. pos.: [0]D

Schwefel function:

𝑓 (𝑥) =
dim∑
𝑖=1

−𝑥𝑖 sin(
√
|𝑥 |) (8)

Search Range: [-512,511]D; Glob. opt. pos.: [420.96]D

5 THE EXPERIMENTS
One of the key aspects of modern swarm algorithm designs is the
ability to maintain the population diverse and therefore keep the
ability to create new (different) solutions by the crossover or similar
operations. Many of the swarm intelligence heuristic optimizers
suffer from fast premature convergence into sub-optima. The speed
of diversity loss is, therefore, an essential characteristic of such
methods. One of the main purposes of perturbation operator in
SOMA is to keep the population diverse, that is at least in the initial
phases of the search. We investigated the impact of different prt
values on the diversity of the population.

5.1 Diversity
In the following experiment, we optimized the four above described
benchmark functions, and observed the diversity of the population
for different prt values, starting at 0.1 and ending at 1 by step 0.1.
For each setting, 50 independent runs with random population ini-
tialization were performed. The experiments were performed for
two different dimensionality settings to investigate if the dimen-
sionality affects the population diversity development for different
prt values.

With accordance to general recommendations [16] and the focus
of this study, the algorithm was set up as follows: Population size:
30; Migration loops: 100; Step = 0.11; Path Length = 3; Dimension =
10, 100;

The average from 50 runs relative population diversity values
for different prt settings are given in Figs. 7 - 10. Please note that
after uniform random initialization, the relative diversity of the
population (according to the used measure) is between 55% and
60%.

For the Sphere function, the population diversity loss is very fast.
The simple unimodal surface of a spherical function is ideal for fast
local-search. The difference in diversity loss for prt = 1 and 0.9 is
almost indistinguishable. With any other setting than prt = 0.1 the
population diversity is well under 15% after just 20 iterations of the
algorithm for both dimensional settings. This might not be an issue
for a unimodal problem. However, it might prove very troublesome
in higher dimensions.
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Figure 7: Average population diversity history - Sphere func-
tion - 50 runs, dim: 10 upper, dim: 100 lower
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Figure 8: Average population diversity history - Rosenbrock
function - 50 runs, dim: 10 upper, dim: 100 lower

The results for Rosenbrock function depict very similar diversity
loss. The diversity reaches near-zero values for the majority of the
settings during the first third of the provided migration loops. With
prt <0.5, it takes less than 10 migration loops for the diversity to

reach 10%. The dimensionality of the problem seems to have only a
limited effect on the diversity loss rate.
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Figure 9: Average population diversity history - Rastrigin
function - 50 runs, dim: 10 upper, dim: 100 lower

The Rastrigin function represents a periodical, highly multi-
modal fitness landscape. The diversity loss is significantly slower
than in previous cases. With the prt value set to 0.1, the popula-
tion maintains diversity over or around 10% through the whole
optimization. Therefore the fitness landscape is clearly a factor in
diversity loss. There is a significant gap between the diversity loss
rate for prt set to 0.1 and 0.2.

The Schwefel function manages to produce the most significant
difference in the speed of the population diversity loss for different
values of prt. Again, setting the prt to 0.1 helps the population to
avoid complete loss of diversity in the given time-frame of 100 mi-
gration loops. For all other tested settings of prt and dimensionality,
the diversity eventually drops to near-zero values.

5.2 Dimensional convergence and optima
proximity

Another important characteristic of a population-based method
is how the individuals avoid a notorious “two steps forward, one
step back” problem. The problem represents a phenomenon when
the individual moves towards a more feasible solution in some
dimensions but moves another way in others.

In this experiment, we illustrate the convergence pattern and op-
tima proximity of the population in 10-dimensional space using the
Box and Whiskers plot that depicts the statistical characteristics of
the population parameter pool (median, maximum, minimum, 25%
and 75% quantiles), the y-axis value is given by the corresponding
parameter value (in the individual position vector). The aim is to
observe the population dynamics in multi-dimensional space.
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Figure 10: Average population diversity history - Schwefel
function - 50 runs, dim: 10 upper, dim: 100 lower

The statistic is based on 50 repeated runs with pop. size = 30 that
equals 1500 data samples for each plot. Each data sample is a vector
representing the ten parameters of the individual. We observe the
population at the start, after 10, 20, 50 and 100migration loops. As an
example, prt is set to 0.1 and 0.8 similarly to the initial experiment.
The Rastrigin function is used as the fitness landscape for this
experiment; the global optima location is a vector of zeros.

At the start (migration loop 1), the population is evenly spread
over the search space as is depicted in Fig. 11a), but converges
rapidly after just ten iterations (See Fig. 11b)). The majority of the
population parameter pool (possible parameter values for crossover)
is between -1 and 1.

In an ideal (and simplified) case, the population parameters will
converge evenly in all dimensions toward the zero (position of
optima), however, given the stochasticity of the search process,
irregularities start to develop in the parameter pool across dimen-
sions, despite that the data are acquired from 50 independent runs
of the algorithm. As is depicted in Fig. 11c), and more notably in
Fig. 11d), the convergence in some dimensions is faster than in
others. More importantly, for the prt value set to 0.1, the conver-
gence continues during the majority of the optimization process.
In Fig. 11e), the state at the last migration loop is visualized.

In contrast, after 10 migration loops, when prt is set to 0.8 the
population diversity pool (initialized randomly (Fig. 12a) )) con-
verges rapidly but less evenly than in the previous case. There is
no further development in the parameter pool and therefore the
Fig. 12b) depicts the state after 10, 20, 50 and 100 migration loops.
The explanation is that in all 50 runs the algorithm converged into
local sub-optima before 20 migration loops were finished.

In the above presented experiment, we observed that higher prt
value (exampled on prt = 0.8) leads to very fast convergence into
sub-optima in all dimensions of the problem. As the dimensions
are independent of each other, there is different distribution of
population parameters in each dimension. Despite that in the case
of prt = 0.1 the convergence is much slower and more even amongst
the dimensions at first, in the final stage the same disproportion
among the dimensions is observable. Therefore it seems that the
prt value has no effect on this phenomenon (as is it caused mainly
by the stochastic nature of the optimization process).

5.3 Parameter space coverage
Finally, to provide another insight into the population dynamics,
we present a Parameter space coverage visualization example in
this section. Selecting a random run of the algorithm on Rastrigin
function (search space bounds -5, +5) in dim=10, each individual
in Fig. 13 is visualized as a colored line connecting 10 parameter
values, corresponding to the position of the individual in the search
space. We further highlight the parameter space coverage borders
of the population (min, max parameter value in each dimension in
the whole population) by black lines.

To maximize the successfully crossover potential, the popula-
tion should be able to cover the whole area between the function
bound values (-5, +5). In Fig 13a) the state of the population after
initialization for prt = 0.1 is depicted.

The parameters of the individuals are randomly distributed. In
fast converging algorithms like SOMA All-to-One, individuals only
very rarely leave the area between the black lines. As presented
in Fig 13b) - e), with the convergence of the population, the area
covered by the population is shrinking rapidly. The process is much
faster for prt = 0.8 (Fig. 14).

The added benefit of this type of visualization is that it allows
us to observe all individuals and their changes in time. Generally,
if all the lines follow the same general shape, the crossover oper-
ator is dominant, and in the case of SOMA algorithm, the Leader
shapes the whole population (fast convergence). If there are dif-
ferent shapes of the lines, there is more stochasticity (successful
mutation) in the population. In the above presented examples, all
individuals converge fast into the same general shape and the pop-
ulation is unable to produce new successful offspring given the low
diversity of the population parameter pool and falls into stagnation
(premature convergence). The speed of the premature convergence
varies by the prt setting, however neither setting is able to avoid it,
providing another piece of evidence that static setting of prt should
be avoided.

6 CONCLUSION
We have presented a detailed study on how the perturbation opera-
tor works in SOMA and how the setting of prt control parameter
relates to population diversity, movement patterns, and conver-
gence in multi-dimensional space. The perturbation operator simu-
lates the random mutation, and it is the main stochastic element
in SOMA. As was presented, the population dynamic of SOMA is
significantly sensitive to the setting of its control parameter prt. The
lower prt value slows the diversity loss, prolongs the convergence
phase and limits the individuals’ movement. The area explored by
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Figure 11: Population parameter pool; prt: 0.1; 1500 samples
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Figure 12: Population parameter pool; prt: 0.8; 1500 samples,
Migration loop: 1 (upper), Migration loop: 10, 20, 50 and 100
(lower)

the individuals is also smaller when compared to higher prt values
in the same migration loops limit.

As the inner dynamic of SOMA is completely self-adaptive, the
behavior patterns associatedwith particular prt value scale similarly
regardless of the problem dimensionality, or the search space size.

Even though the results are affected by various factors, themodal-
ity of the fitness landscape included, the general behavior charac-
teristics like the diversity loss ratios are consistent.

Further, the convergence in higher-dimensional space is much
more consistent for small prt value (0.1). On the other hand, for
low-dimensional problems, a low prt value presents a significant
obstacle for the movement of the individuals, and such a setting
should be well re-considered.

Based on the acquired knowledge, several points and recommen-
dations for future research are listed below:

(1) Low values of prt lead to better population dispersion on
the fitness landscape in later phases of the optimization.
However, it does limit the movement significantly for lower
dimensional problems. For low dimensions, settings of prt
near 0.1 should be avoided in favor of higher values.

(2) The perturbation is an essential factor for maintaining the
diversity of the population, yet the static setting of prt might
not be favorable for general black-box problems. An adaptive
or ensemble mechanism for prt is a favorable possibility and
subject of future research.

(3) In SOMA, maintaining higher diversity does not guaran-
tee a convergence into global optima but merely helps the
population to avoid local sub-optima for a longer time and
prolongs the active search time. Another modification is
probably necessary to improve the final optima proximity
of the population.
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Figure 13: Parameter space coverage visualization; prt: 0.1; 30 individuals

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10
Parameter

-4

-2

2

4

Value

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10
Parameter

-4

-2

2

4

Value

Figure 14: Parameter space coverage visualization; prt: 0.8;
30 individuals, Migration loop: 1 (upper), Migration loop: 10,
20, 50 and 100 (lower)

(4) The original All-to-One variant of SOMA is subject to very
fast population convergence, that can only by a limited
amount be slowed down by the prt setting.

This study aimed to provide an insight into the perturbation
operator in SOMA and to illustrate the main issues of various
settings of the prt control parameter. We believe that the provided
evidence and visualizationwill prove useful for researchers working
with the algorithm or with population-based methods and swarm

algorithms in general. In the future, we will aim to perform similar
studies on other SOMA variants and present the results to the
scientific community and SOMA users.
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