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ABSTRACT
We consider a multi-objective optimization problem with objective
functions that are expensive to evaluate. The decision maker (DM)
has unknown preferences, and so the standard approach is to gen-
erate an approximation of the Pareto front and let the DM choose
from the generated non-dominated designs. However, especially for
expensive to evaluate problems where the number of designs that
can be evaluated is very limited, the true best solution according to
the DM’s unknown preferences is unlikely to be among the small set
of non-dominated solutions found, even if these solutions are truly
Pareto optimal. We address this issue by using a multi-objective
Bayesian optimization (BO) algorithm (see, e.g., [5]) and allowing
the DM to select a preferred solution from a predicted continuous
Pareto front just once before the end of the algorithm rather than
selecting a solution after the end. This allows the algorithm to un-
derstand the DM’s preferences and make a final attempt to identify
a more preferred solution. We demonstrate the idea using ParEGO
[2], and show empirically that the found solutions are significantly
better in terms of true DM preferences than if the DMwould simply
pick a solution at the end.
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1 PROBLEM DEFINITION
We assume a space of possible solutions x ∈ 𝑋 ⊂ R𝐷 where the
objective function is an arbitrary black box f : 𝑋 → R𝐾 that
returns a deterministic vector output y ∈ R𝐾 . The (unknown)
DM preference over the outputs can be characterized by a utility
function 𝑈 : R𝐾 → R. Thus, of all solutions in 𝑋 , the DM’s most
preferred solution is x∗ = argmaxx∈𝑋 𝑈 (f (𝑥)).

There is a budget of 𝐵 objective function evaluations. It is pos-
sible to engage with the DM once after 𝐵 − 𝑝 evaluations to learn
about the DM’s preferences. The algorithm then continues run-
ning for the final 𝑝 iterations. At the end, the DM chooses a pre-
ferred solution x𝐵 from the sampled solution set Γ according to
x𝐵 = argmax𝑥 ∈Γ 𝑈 (f (𝑥)). The quality of the final solution set Γ is
determined by the utility of the chosen sample, and we choose to
minimize the Opportunity Cost (OC) or regret:

𝑂𝐶 = 𝑈 (f (x∗)) −𝑈 (f (x𝐵))

2 ALGORITHM
2.1 Statistical Model over Simulator and Utility
We follow ParEGO where the DM’s utility can be described with
a Tchebychev utility 𝑈𝜽 (x) with parameters 𝜽 ∈ Θ. The utility
may be modelled by a Gaussian Process (GP) with mean function
𝜇𝑈 (x) : 𝑋 → R and a covariance function 𝑘𝑈 (x, x′) : 𝑋 × 𝑋 → R.
However, to show a Pareto front approximation to the DM, we
propose to use an independent GP to model each objective function
𝑦 𝑗 = 𝑓𝑗 (x),∀𝑗 = 1, . . . , 𝐾 , defined by a mean function 𝜇 𝑗 (x) : 𝑋 →
R and a covariance function 𝑘 𝑗 (x, x′) : 𝑋 × 𝑋 → R.

We use the popular squared exponential kernel and set the prior
mean to zero and we estimate hyper-parameters by maximising
the marginal likelihood. Further details can be found in [3].

2.2 ParEGO with p-Step Preference Elicitation
During the first 𝐵 − 𝑝 − 1 iterations ParEGO translates a multi-
objective problem into a single-objective problem using a Tcheby-
chev function with randomly sampled 𝜽 ∈ Θ. To focus more directly
on the region interesting to the DM, at step 𝐵 − 𝑝 we fit a GP for
each objective function 𝑓𝑗 (𝑥) to produce a response surface over
each output using the mean posterior 𝜇𝑚 . Then, we use NSGA-II
to produce a Pareto front approximation based on the response
surfaces and show this approximation to the DM. At this point, the
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DM picks their most preferred solution 𝑥𝑝 . Assuming that the DM’s
utility function is based on the Tchebychev utility, we can estimate
the parameters 𝜽 as

𝜃𝑖

𝜃 𝑗
=
𝑓𝑗 (𝑥𝑝 )
𝑓𝑖 (𝑥𝑝 )

∀𝑖, 𝑗 = 1 . . . 𝐾

Finally, we compute the last 𝑝 optimization steps by using ex-
pected improvement with the estimated parameters 𝐸𝐼�̂� (𝑥).

3 RESULTS AND DISCUSSION
We compare the proposed approach against using standard ParEGO
without exploiting information from a DM in the final 𝑝 optimiza-
tion steps. To plot the convergence of the opportunity cost (OC) over
iterations, we want to show, at each iteration 𝑖 , the performance if
the algorithm would have stopped there. Thus, to determine the OC
at iteration 𝑖 , we take the set of non-dominated solutions generated
up to iteration 𝑖 − 𝑝 , create an approximation of the Pareto front,
select the most preferred solution from that approximated front
by using the true DM’s preferences, and finally execute iterations
𝑖 −𝑝 +1, . . . , 𝑖 of the optimization taking the preference information
into account. The final OC at iteration 𝑖 is then the OC of this final
solution set and is based on the true DM utility function.

3.1 Experimental setup
The true underlying parameters are generated randomly for every
replication of a run using a different random seed. In all experiments,
NSGA-II is run for 300 generations with a population size of 100 to
produce a Pareto front approximation. We use the POL function [1]
defined over 𝑋 = [−𝜋, 𝜋]2 and also has 𝐾 = 2 objectives, and the
HOLE function [4] defined over 𝑋 = [−1, 1]2 with 𝐾 = 2 objectives
with parameter 𝑏 > 0.

3.2 Synthetic Experiments
Figure 1 (first row) displays the benefit that can be gained from
showing the DM the approximated Pareto front at the final stage
of optimization, with 𝑝 = 1 or 𝑝 = 2. Results look similar, although
there seems to be a more noticeable difference between the set-
tings of 𝑝 = 1 and 𝑝 = 2 on the POL problem. Figure 1 (middle
row) shows the results when the DM’s true utility model is linear,
meaning there is a mismatch between the DM’s true utility model
(unknown to the algorithm) and the learned Tchebychev model
used in ParEGO. Results show a reduced benefit from asking the
DM one step before the end of the run. Lastly, Figure 1 (bottom
row) considers the final OC after 100 iterations for larger values of
𝑝 . Best results for both synthetic functions were found when the
DM is shown the approximated front approximately 20 iterations
before the end of the run. Asking the DM very early yields rather
poor results, presumably because the approximated Pareto front
shown to the DM at that time is far away from the true Pareto
front, and the information learned from the interaction is therefore
not very helpful. However, after 80 evaluations, the approximated
Pareto front seems of sufficient quality to get a meaningful estimate
of the DM’s preferences and guide the remaining optimization steps
in a reasonable direction.

POL Function Hole Function

Figure 1: Mean and 95% CI for the OC over iterations (first
and middle row) and final OC over 𝑝 (bottom row).

4 CONCLUSION
For the case of expensive multi-objective optimization, we show
how the surrogate models generated by BO can be used not only to
speed up optimization, but also to show an approximated continu-
ous Pareto front to the DM once before the end of optimization. The
information on the most preferred solution can be used to focus the
final iterations of the algorithm to try to find this predicted most
preferred solution, or even a dominating solution. We argue that
the additional cognitive effort for the DM should be small, but the
benefit in terms of true utility to the DM may be significant. We
demonstrate the proposed approach on a few test problems.

Future directions may include to explore this idea with other BO
algorithms, and also to turn this into a fully interactive approach
with multiple interactions with the DM during the optimization.
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