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ABSTRACT

In this study, we investigated visualization of search be-
havior in single-objective optimization function, where the
objective function is composed of distinct components, either
explicitly (as terms in the objective function or as compo-
nents of a hybrid function) or implicitly (as constraints).
We proposed a visualization method for constrained single-
objective optimization in which the constraint violations and
the term-by-term values of the polynomial objective function
are separately calculated by RadViz and plotted in 3D. The
proposed method is superior to the two-dimensional RadViz
visualization in that it shows degasement of the fitness and
constraint violations over time in the benchmark problem
and can display them separately. Similarly, for the hybrid
function, which is a benchmark problem consisting of multiple
terms with different objective subfunctions, the difference in
the timing of the decrease in fitness for each term is visualized
by RadViz.

CCS CONCEPTS

∙ Human-centered computing → Visualization tech-
niques; ∙ Theory of computation → Evolutionary algo-
rithms; ∙ Computing methodologies → Continuous space
search.
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RadViz, Constrained single-objective optimization problem,
Real-world optimization problem, Hybrid function
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1 INTRODUCTION

Understanding the behavior of optimization algorithms in
real-world optimization problems with many constraints and
complex evaluation functions is important but difficult, and
various visualization methods have been proposed. For ex-
ample, [16] uses heatmaps to visualize the exploration of
real-world problems. In particular, there are several studies
on visualization of solution sets in multi-objective optimiza-
tion, as described in the next section. However, previous
work on search visualization has not focused on the compo-
nents of the objective function. We propose a method for
visualizing constraint violations and fitnesses simultaneously,
and present the results of visualizing the transition of the
values of the fitness function components for each term dur-
ing the search with DE and CMA-ES based algorithms on
the CEC2020 Real-World Single Objective Constrained Opti-
mization (CEC20RW) [13] Real-World benchmark problems.
The proposed method is able to visualize the decrease of the
fitness during the search of reducing the amount of constraint
violation.

We also applied the visualization method to hybrid func-
tions, which have similarities with the Real-World problem in
that the fitness is based on the sum of several terms of differ-
ent objective subfunctions. Hybrid function is a special setting
in which there are no dependencies between the component
functions, but the study of the behavior of search algorithms
in this problem is very limited. We used RadViz to visualize
the balance of the decrease in the three to six different com-
ponent function values that make up the hybrid functions.
This revealed that in the problems of CEC2017 Competition
on Single Objective Bound Constrained Real-Parameter Nu-
merical Optimization [2], some component functions such as
Bent Cigar func tended to be solved first.

2 PREVIOUS WORK

The visualization of solutions in multi-objective optimization
has been studied by projecting the Pareto front into two
dimensions, such as [7, 21]. [21] shows a sorted heatmap and
visualization. RadViz [9] is a multidimensional visualization
method, where each dimension is equally spaced on the cir-
cumference of a circle, and points are plotted inside the circle.
The closer a point is to the point that represents a particular
dimension of the circumference, the larger the value of that
dimension is compared to the other dimensions, and con-
versely, when the values of each dimension are almost equal,
the point is plotted near the center of the circle. [1, 10, 15]
extends RadViz as follows. 3D-RadViz [10] adds the distance
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between the hyper-plane and the solution obtained from the
extreme points to the usual 2D RadViz in the Pareto front
visualization. Viz3D [1] tries to improve the viewability of
RadViz by taking the average value of all variables on the
z-axis. RadVizS [15] takes the distance from the origin of the
original space on the z-axis and projects the data in three
dimensions. In addition, Walker et al. [20, 22], visualized the
search process to compare the characteristics of the prob-
lem, the differences between algorithms, and the effects of
parameter settings. In the visualization of the population,
visualization that connects the search space and the objective
space is being worked on.[11, 21]

3 VIZUALIZATION OF SEARCH
BEHAVIOR ON CEC20RWSO

The CEC2020 Real-World Single Objective Constrained Op-
timization (CEC20RWSO) benchmarks is a set of single-
objective optimization benchmark problems which includes
many kinds of real-world problems, including industrial chem-
ical processes and process synthesis, design problems and
mechanical engineering problems. In multi-objective opti-
mization, individual fitnesses are recorded and Pareto fronts
are often drawn, but in single-objective optimization, the
fitnesses of each component of the objective function are
rarely recorded and visualized. In this study, we analyze the
fitness of each term explored by a single-objective optimiza-
tion algorithm, and propose a method for visualizing the
search process in constrained single-objective optimization.

3.1 Experimental Setup

In the original CEC20RWSO benchmark code, each compo-
nent of the objective function is added to a single fitness
value, and only the summed value is returned. Algorithms
minimize the summed value. To analyze the behavior of each
component, we instrumented the code for functions F1 to
F33 and expanded them into multiple terms to the extent
possible, except for F4, F22, F24, F27, F28, and F31, whose
expressions could not be divided into terms, and the values
of all terms were recorded each time the best member in the
population is updated. Details are given in Appendix. This
instrumentation does not affect the behavior of the search
algorithm on any of these functions.

COLSHADE[5]and sCMAgES[8], which came in second
and third place, respectively, in the CEC20RWSO competi-
tion, were used in the experiments. COLSHADE is a variant
of LSHADE[18] for constrained optimization, an algorithm
that prioritizes the comparison of constraint violations over
fitness in individual selection based on the constraints han-
dling method [4]. sCMAgES is a CMA-ES based algorithm
that performs gradient-based repair method [3]. The param-
eters are based on the original settings and the maximum
number of evaluations is based on the competition rules. The
source codes were downloaded from https://github.com/P-
N-Suganthan.

3.2 Standard Visualization Approach

The standard approach for visualization search algorithms is
a performance plot such as Figure 1: for each term 𝑦𝑖 in the
additive fitness function 𝑦 = 𝑦0 + 𝑦1, ..., plot x-axis: number
of evaluations, y-axis: normalized value of 𝑦𝑖, 1 line per term.
First, we look at the results of COLSHADE. Since there are
some problems in Fig. 1, such as F12, F15, F18 and F23,
where the plots are crowded and difficult to read, we have
also included both logarithmic plots in Fig. 2. F8 and F10
were decomposed into two terms, but they were excluded
because one of their terms did not show any variation during
the search. Each point represents an update of the best value
in the population.

The results of sCMAgES are also shown in Figure 3. In Fig-
ure 4, only the y-axis is on a logarithmic scale. sCMAgES has
frequent restarts, unlike COLSHADE, so instead of showing
a point each time the best value of the population is updated,
we show a point for the best member for each generation,
resulting in a more crowded plot than the COLSHADE plots.

Figure 1: Visualization of the component function value
trends obtained from the COLSHADE search using the
standard method of showing a time series on the horizon-
tal axis and a normalized fitness on the vertical axis.

3.3 Using RadViz to visualize component
function value trends

Figure 5 and Figure 6 are RadViz plots of same runs as in
Figures 1-3. Each point on the circumference represents a com-
ponent function value, and the color indicates the time series.
The color is blue at the beginning of the search and becomes
red as the search progresses. The RadViz coordinates were
calculated using the Python library Pandas.plotting.radviz.

Looking at Figure 5, RadViz only has information about
the relative size of each term, but it shows the changes that
occurred during the search in a clear way. The plot of F3 in
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Figure 2: Figure 1 with both axes plotted on a logarith-

mic scale.

Figure 3: Visualization of the component function value
trends obtained from the sCMAgES search using the
standard method of showing a time series on the hori-

zontal axis and a normalized fitness on the vertical axis.

the figure is a broken line, and we can see that it corresponds
to the trade-off between f3 and f5 and the increase/decrease
of f2 shown in Figure 1. F5 is hard to see in the performance
plot because of the many colors, but upon close inspection, it
can be seen that fitness decreases leaving f2 and f5, then f5,
followed by f2, and finally f6 increases.; RadViz simply shows
the plot moving towards f2 and then back towards f6. F9 in
RadViz figure shows the plot moving from f2 to f3, which
is also easy to see from the performance plot. Similarly, the

Figure 4: Same data as Figure 3, y-axis logarithmic scale.

Figure 5: Visualization of the same data as in Figure 1

using RadViz.

plot ends at a particular term in F11, F12, F13, and F32,
which can also be seen from the performance plot. In F15 and
F29, RadViz shows that the plot is directed to the middle
of two terms, but in the performance plot of F15, the lines
overlap, and the colors of the lines are difficult to distinguish.
The RadViz figure for F16 is the most distinctive, with the
plot going from f12 to f9 and then reaching f14. The 2 shows
that the green and red lines are floating, but it is difficult to
read the 15-color plot accurately. In general, although the
information available from RadViz is limited, the variation
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Figure 6: Visualization of the same data as in Figure 3
using RadViz.

in the timing of the changes in the fitness of each term is
concisely expressed even if it is difficult to distinguish the
colors of each term.

Next, we show the results of CMAgES. The RadViz plot in
Figure 6 shows the time series as a color map, but the colors
do not correspond to the number of generations because
of the restart. Also, the plots are more widely distributed
than COLSHADE, partly due to the large number of points
plotted. From the figure, it can be seen that the restarts
resulted in several clusters that are slightly different. For
example, four lines are visible near the center of F9 in the
figure. There are also a few lines near the center of F3 and
F11, although they are slightly obscured. These are different
from the lines linked to the search phase as seen in Figure 5.
Figure 3 gives a more detailed fitness history, but the RadViz
plot is clearer for F3, F9, and F29, where a few lines can be
seen in the figure.

3.4 Visualization of constraint violation
and component function value trends

To our knowledge, there has been no previous work in visual-
izing constraint violations during search by an evolutionary
optimization algorithm. As a measure of constraint violation,
the CEC20RWSO Competition uses the feasibility rate, which
is the fraction of runs in which at least one feasible solution
is attained. The reasons why it is difficult to simultaneously
visualize the amount of constraint violation and the fitness is
that the amount of constraint violation becomes zero when a
feasible solution is obtained, and the number of constraint
equations and the number of objective functions add up to
an overcrowded circumference, which hinders interpretation.

A figure of constraint violations and objective functions ar-
ranged on a single circumference is shown in 7. The label f
in the figure stands for fitness, g for inequality constraints,
and h for equality constraints. The inclusion of the constraint
violation amount, which approaches zero faster than fitness,
makes Figure F7 more visible than Figure 5, which visualizes
only fitness, because the points have shifted, but the fact that
fitness and constraint violation are in the same plane makes
it difficult to understand them separately. Also, since the
amount of constraint violation has higher priority than fitness
in COLSHADE, these should be separated to understand the
behavior of the algorithm.

Figure 7: RadViz plot of constraint violations and com-
ponent function values on the circumference. The color

gradient indicates the time series.

3.5 Proposed method for simultaneous
visualization of violations and
objective values

We propose a method to visualize constraint violations and
objective functions by distinguishing them on different axes,
calculating coordinates by RadViz for each component func-
tion value and the amount constraint violation, and visualiz-
ing them in four dimensions: 3D space and color. The radian
of the polar coordinates of the constraint violation expressed
in RadViz is the third dimension. The radii of the polar co-
ordinates correspond to the color map. The feasible solution
with zero constraint violation is shown in gray, which is not
in the color map. Constraints with zero constraint violation
from the beginning of the search are not plotted. As with
fitness, the amount of constraint violation was normalized to
the range of 0 to 1 using the minimum and maximum values
during the search.

3.6 Experimental Results

The results of COLSHADE are shown in the left column of
Figure 8; the problems from F1 to F33 for which feasible
solutions were obtained from the beginning of the search are
not shown. The figure shows a compact visualization of how
constraint violations are resolved, and component function
values are optimized as the search proceeds. For F1, the
plot is located in the plane because the objective function is
decomposed into two terms. The plots are widely distributed,
and we can see that some of them are in the red color, i.e.,
in an arrangement that is close to the circumference when
the amount of constraint violation is expressed in RadViz.
For F2, unlike F1, the plot is concentrated on f2, which
indicates that f1 and f3 were reduced first, and the color of
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Figure 8: Visualization of constraint violations and component function values obtained by COLSHADE(left figure)

and sCMAgES (right figure) using the proposed method. The coordinate axes represent the RadViz coordinates of

the component function values and the radians of the RadViz representation of the amount of constraint violations.
The colors correspond to the radii from 0 to 1, with red points having larger values and blue points having smaller

values. Feasible solutions are shown in gray. The earliest and last points in the plot are marked with a cross and a star,
respectively. Note that in some of the figures, the labels of constraint equations that were overcrowded were omitted

due to paper limitations.

the plot indicates that there was a stage where the first half
of the nine constraint equations remained in violation of the
constraints. From the plot of F6, we can read that f1 becomes
smaller faster than f2 before the constraint violation becomes
zero, and the remaining constraint violation is in the process
of being solved in the next stage. For F7, we can see from
the color of the plot that some constraint violations remain
toward the end of the search. This is not readily apparent
from Fig. 7, indicating the superiority of the proposed method.
From some of the problems in the figure, we can also read
the transition of fitness after a feasible solution is obtained.
For F3, there was no bias in the decrease of fitness until
some constraint equations were solved late, but after the
feasible solution was obtained, we can see that the fitness
decreased first except for f5. Similarly for F5, there is no
significant change in the RadViz coordinates of fitness until
the constraints are satisfied. On the other hand, in F16, after

the constraint was satisfied, the coordinates of fitness moved
from f11 and f9 to f14. We can see that g7 was the last
remaining constraint violation. Thus, the proposed method
allows us to understand which constraint violations remain
separately from the fitness, while showing the readable timing
of the decrease in individual fitness and the decrease in the
amount of constraint violations. However, there is a drawback:
by using RadViz radians as the axes of the 3D plot, the
constraint equations that used to be next to each other are
now separated at both ends of the diagram. This is a point
that requires attention when interpreting the figure, and we
would like to improve this point by rearranging the constraint
equations.

The results of sCMAgES are also shown in the right column
of Figure 8. In F11, there was a shift of the plot from f1 to
f5 in COLSHADE, and the plot is distributed from f1 to
the center in sCMAgES as well. The clusters due to restarts
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seen in RadViz can be seen more clearly in the figure with
the added dimension of the constraint equation. In F18, we
can see from this figure that three stages are connected: the
stage where constraint g2 is violated and f4 remains, the
stage where constraint g1 and f2 remain, and the stage where
constraint g1 and f4 remain, which successfully visualizes
the relationship between constraint violation resolution and
fitness reduction. Similarly, in F30, the diagram suggests that
there is a relationship between g8 and f1, and g5 and f2. In
addition, overall, there are more plots that are spread out
in the gh-theta axis in sCMAgES compared to COLSHADE.
The continuous plots in the gh-theta direction seen in F12,
F16, F17, F18, F19, and F30 represent the movement of plots
such as g1 to g2 in F17 and g1 to g2 in F18 in the RadViz
plot of the amount of constraint violation. In this chapter, we
have clearly visualized that in CEC20-RW, some constraints
or fitness terms are solved first in the search process. In the
next section, we show that by decomposing and visualizing
the terms of the fitness for another benchmark, each term of
the fitness is solved in turn, as in CEC20RW.

4 BEHAVIOR OF SEARCH IN HYBRID
FUNCTIONS

The hybrid function is an objective function that consists
of multiple terms with different shapes similar to the Real-
World problems we have seen so far. In this section, we
tackle the visualization of the search process in which a
particular component function value decreases first, which
we also focused on in the previous section in the optimization
of hybrid functions.

A hybrid function is a composite function created by divid-
ing the problem dimension into multiple sets and assigning
a different objective function to each set. Since each set is
assigned variables in a specified ratio and a rotation matrix is
applied to the group of variables, all the component functions
have the property of being non-separable. However, since
there is no dependency between the objective functions, the
hybrid function is partially separable. Partial separability
is a property that is also present in real problems [14]. [19],
which studied the behavior of parameter adaptation when an
adaptive DE searches for a two-component hybrid function,
experiments showed that, depending on the proportion of
variables assigned to each set, the adaptation of parameters
to one component function at the expense of the other can
lead to failure of search in some cases.

4.1 Visualization of fitness trends using
RadViz

The experiments were conducted on four algorithms: EBOwith-
CMAR [12], the first-place algorithm in the Competition on
Single Objective Bound Constrained Real-Parameter Nu-
merical Optimization [2], and the top three algorithms in
the following year’s competition using the same problem,
HS-ES [23] (1st), LSHADE-RSP [17] (2nd), and ELSHADE-
SPACMA [6] (3rd). The source codes were downloaded from
https://github.com/P-N-Suganthan. The experimental setup

was 48 trials each with a maximum number of evaluations of
dimensionality 𝐷 × 10000.

First, the fitnesses of component function at the end of
the search in 30 dimensions is shown in the histogram 9. The
histogram values for each component function were calculated
by subtracting the average value of the best algorithm from
the average value of each algorithm. The same color was used
for identical component functions in the drawing. According
to the figures, there is no difference among the algorithms
for some of the component functions, suggesting that they
are solved early in the search. On the other hand, Schwefel’s
func occupies a large proportion of the F12, F16, F17, and
F20 figures, and is still in the process of minimization at the
end of the search.

We also used RadViz to visualize how the component
functions are solved in order. The value to be displayed is
calculated as the degree to which the ratio of individual
component function values to the total fitness deviates from
1/𝑁 (where N is the number of components). This indicator

is 𝑒𝑎𝑐ℎ𝑓𝑖𝑡𝑛𝑒𝑠𝑠
𝑠𝑢𝑚𝑜𝑓𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑒𝑠

− 1
𝑁

and is the same as the formula for the
mean error.

The results are shown in Figure 10. Each point is an output
with a timing of (0.01, 0.02, 0.03, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5,
0.6, 0.7, 0.8, 0.9, 1.0)×𝑀𝑎𝑥𝐸𝐹𝐸𝑠 to be listed in the CEC18
Competition submission file. The figure shows that the plot
moves to visit some functions on the circumference. There
is a light blue plot near the Bent Cigar func and Elliptic
func on the circumference, and the plot moves away from
them. This indicates that these two functions will be solved
first. In F11, F14, F15, F19, and F20, the plot visits the
Rastrigin func approximately second. On the other hand,
there is no plot near Ackley’s func in F14, F17, and F20
of the figure. Only for F18, the plot ends between Ackley’s
func and Rastrigin’s func, which means that it may vary
depending on the combination of the constituent functions.
Schwefel’s func is visited last in F12, second in F16 and F17,
and first in F20. One of the reasons why common functions
are solved first in multiple problems is that the component
functions are added together with fixed weight 1 for all terms.
Therefore, for F14, F18, and F20, we tested multiplying one
of the component functions by a weight. In the experiment,
we multiplied the fitness of Schaffer’s func by 1000 for F14,
by 1/10 for Ackley’s func for F18, and by 1/10 for Modified
Schwefel’s func for F20. The results after the modification
are shown in Figure 11. Comparing the results before and
after the modification, we can see that there is a change in
the component functions whose weights were adjusted, as
well as a relative change in the other component functions.
Thus, we showed that the emphasis of the search changes
depending on the weights applied to the components. We
also found that same component functions are solved first
across multiple problems in the CEC benchmark problem
with weights fixed to 1.
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Figure 9: Stacked histograms of fitness by component function at the end of the search for the hybrid function in 30

dimensions. Bars are from left to right: HS-ES, EBOwithCMAR, LSHADE-RSP, ELSHADE-SPACMA. The fitness per
component function is the average value per algorithm minus the average value of the best algorithm.

Figure 10: RadViz plot of component function values in 50 dimensions. The color gradient indicates the time series.

Figure 11: RadViz plots of F14, F18, and F20 after mod-
ification. The data before the modification of fitness is

shown in gray for comparison.

5 CONCLUSION

In this study, we investigated visualization of search behavior
in single-objective optimization function, where the objective
function is composed of distinct components, either explic-
itly (as terms in the objective function or as components
of a hybrid function) or implicitly (as constraints). We pro-
posed a visualization method for constrained single-objective

optimization in which the constraint violations and the term-
by-term values of the polynomial objective function are sepa-
rately calculated by RadViz and plotted in 3D. The proposed
method is superior to the two-dimensional RadViz visualiza-
tion in that it shows the time points of decrease of the fitness
and constraint violations in the benchmark problem and
can display them separately. Similarly, for hybrid functions,
which are a benchmark problem consisting of multiple terms
with different objective subfunctions, the difference in the
timing of the decrease in fitness for each term is visualized by
RadViz. By doing so, we showed that there tends to be an
ordering in which the component functions are optimized in
the CEC2017 Competition hybrid function problems. In fu-
ture research, we would like to improve the proposed method,
such as considering an appropriate ordering of constraints,
and apply it to multi-objective optimization.
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A MODIFIED CEC20RW PROBLEMS
F1 𝑓1 = 35 × 𝑥0.6

1 , 𝑓2 = 35 × 𝑥0.6
2

F2 𝑓1 = (
𝑥1

120×𝑥4
)0.6, 𝑓2 = (

𝑥2
80×𝑥5

)0.6, 𝑓3 = (
𝑥3

40×𝑥6
)0.6

F3 𝑓1 = −1.715 × 𝑥1, 𝑓2 = −0.035 × 𝑥1 × 𝑥6,
𝑓3 = −4.0565 × 𝑥3, 𝑓4 = −10 × 𝑥2, 𝑓5 = 0.063 × 𝑥3 × 𝑥5,

F5 𝑓1 = −9 × 𝑥1, 𝑓2 = −15 × 𝑥2, 𝑓3 = 6 × 𝑥3,
𝑓4 = 16 × 𝑥4, 𝑓5 = 10 × 𝑥5, 𝑓6 = 10 × 𝑥6

F6 𝑓1 = 0.9979 + 0.00432 × 𝑥5, 𝑓2 = 0.01517 × 𝑥13
F7 𝑓1 = 𝑐1,1 + 𝑐2,1 × 𝑥5, 𝑓2 = 𝑐3,1 × 𝑥24 × 𝑥5,

𝑓3 = 𝑐4,1 × 𝑥28 × 𝑥5, 𝑓4 = 𝑐5,1 × 𝑥33 × 𝑥5,
𝑓5 = 𝑐6,1 × 𝑥34 × 𝑥5, 𝑓6 = 𝑐1,2 + 𝑐2,2 × 𝑥13,
𝑓7 = 𝑐3,2 × 𝑥26 × 𝑥13, 𝑓8 = 𝑐4,2 × 𝑥31 × 𝑥13,
𝑓9 = 𝑐5,2 × 𝑥38 × 𝑥13, 𝑓10 = 𝑐6,2 × 𝑥39 × 𝑥13

F9 𝑓1 = −𝑥3, 𝑓2 = 2 × 𝑥1, 𝑓3 = 𝑥2
F11 𝑓1 = 7.5 × 𝑟𝑜𝑢𝑛𝑑(𝑥5), 𝑓2 = 5.5 × 𝑟𝑜𝑢𝑛𝑑(𝑥6),

𝑓3 = 7 × 𝑥3, 𝑓4 = 6 × 𝑥4, 𝑓5 = 5 × 𝑥7

F12 𝑓1 = (𝑟𝑜𝑢𝑛𝑑(𝑥4) − 1)2, 𝑓2 = (𝑟𝑜𝑢𝑛𝑑(𝑥5) − 1)2,

𝑓3 = (𝑟𝑜𝑢𝑛𝑑(𝑥6) − 1)2, 𝑓4 = −𝑙𝑜𝑔(𝑟𝑜𝑢𝑛𝑑(𝑥7) + 1),

𝑓5 = (𝑥1 − 1)22, 𝑓6 = (𝑥2 − 2)2, 𝑓7 = (𝑥3 − 3)2

F13 𝑓1 = −5.357854 × 𝑥2
1, 𝑓2 = −0.835689 × 𝑟𝑜𝑢𝑛𝑑(𝑥4) × 𝑥3,

𝑓3 = −37.29329 × 𝑟𝑜𝑢𝑛𝑑(𝑥5) + 40792.141

F14 𝑓1 = 𝑎𝑙𝑝 × 𝑟𝑜𝑢𝑛𝑑(𝑥1) × 𝑟𝑜𝑢𝑛𝑑(𝑥4)
𝑏𝑒𝑡𝑎,

𝑓2 = 𝑎𝑙𝑝 × 𝑟𝑜𝑢𝑛𝑑(𝑥2) × 𝑟𝑜𝑢𝑛𝑑(𝑥5)
𝑏𝑒𝑡𝑎,

𝑓3 = 𝑎𝑙𝑝 × 𝑟𝑜𝑢𝑛𝑑(𝑥3) × 𝑟𝑜𝑛𝑑(𝑥6)
𝑏𝑒𝑡𝑎

F15 𝑓1 = 0.7854 × 𝑥1 × 𝑥2
2 × (3.3333 × 𝑥2

3),

𝑓2 = 0.7854 × 𝑥1 × 𝑥2
2 × (14.9334 × 𝑥3 − 43.0934),

𝑓3 = −1.508 × 𝑥1 × (𝑥2
6), 𝑓4 = −1.508 × 𝑥1 × (𝑥2

7),

𝑓5 = 7.477 × (𝑥3
6), 𝑓6 = 7.477 × (𝑥3

7),

𝑓7 = 0.7854 × (𝑥4 × 𝑥2
6), 𝑓8 = 0.7854 × (𝑥5 × 𝑥2

7)

F16 𝑓1 = 63098.88 × 𝑥2 × 𝑥4 × 𝑥12, 𝑓2 = 5441.5 × 𝑥2
2 × 𝑥12,

𝑓3 = 115055.5 × 𝑥1.664
2 × 𝑥6, 𝑓4 = 6172.27 × 𝑥2

2 × 𝑥6,

𝑓5 = 63098.88 × 𝑥1 × 𝑥3 × 𝑥11, 𝑓6 = 5441.5 × 𝑥2
1 × 𝑥11,

𝑓7 = 115055.5 × 𝑥1.664
1 × 𝑥5, 𝑓8 = 6172.27 × 𝑥2

1 × 𝑥5,
𝑓9 = 140.53 × 𝑥1 × 𝑥11, 𝑓10 = 281.29 × 𝑥3 × 𝑥11,

𝑓11 = 70.26 × 𝑥2
1, 𝑓12 = 281.29 × 𝑥1 × 𝑥3, 𝑓13 = 281.29 × 𝑥2

3,

𝑓14 = 14437 × 𝑥1.8812
8 × 𝑥0.3424

12 × 𝑥10 × 𝑥−1
14 × 𝑥2

1 × 𝑥7 × 𝑥−1
9 ,

𝑓15 = 20470.2 × 𝑥2.893
7 × 𝑥0.316

11 × 𝑥2
1

F17 𝑓1 = 𝑥2
1 × 𝑥2 × 𝑥3, 𝑓2 = 𝑥2

1 × 𝑥2 × 2

F18 𝑓1 = 0.6224 × 𝑥1 × 𝑥3 × 𝑥4, 𝑓2 = 1.7781 × 𝑥2 × 𝑥2
3,

𝑓3 = 3.1661 × 𝑥2
1 × 𝑥4, 𝑓4 = 19.84 × 𝑥2

1 × 𝑥3

F19 𝑓1 = 1.10471 × 𝑥2
1 × 𝑥2, 𝑓2 = 0.04811 × 𝑥3 × 𝑥4 × 14,

𝑓3 = 0.04811 × 𝑥3 × 𝑥4 × 𝑥2
F20 𝑓1 = (2 × 𝑠𝑞𝑟𝑡(2) × 𝑥1) × 100, 𝑓2 = (𝑥2) × 100

F21 𝑓1 = 𝑝𝑖 × (𝑥2
2) × 𝑥3 × (𝑥5 + 1) × 𝑟ℎ𝑜,

𝑓2 = 𝑝𝑖 × (−𝑥2
1) × 𝑥3 × (𝑥5 + 1) × 𝑟ℎ𝑜

F23 𝑓𝑖 = 𝑟ℎ𝑜 × (𝑥5 × 1𝑒−3) × 𝑝𝑖/4 × (𝑥𝑖 × 1𝑒−3)2 × (1 + (𝑁𝑖/𝑁)2)
(𝑖 = 1, · · · , 4)
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(𝑖 = 1, · · · , 8, 𝑗 = 𝑖//2)
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(
20.219), 𝑓4 = −765.43 × 1𝑒6 × 𝑥−1

1
F30 𝑓1 = (𝑝𝑖2 × 𝑥2 × 𝑟𝑜𝑢𝑛𝑑(𝑥3)

2 × 2)/4

𝑓2 = (𝑝𝑖2 × 𝑥2 × 𝑟𝑜𝑢𝑛𝑑(𝑥3)
2 × 𝑟𝑜𝑢𝑛𝑑(𝑥1))/4

F32 𝑓1 = 5.3578547 × 𝑥2
3, 𝑓2 = 0.8356891 × 𝑥1 × 𝑥5,

𝑓3 = 37.293239 × 𝑥1 − 40792.141
F33 𝑓(𝑖 + 𝑛𝑖 * (𝑗 − 1)) = 𝑋(𝑗, 𝑖)𝑝𝑒𝑛𝑎𝑙 × 𝑈𝑒′ × 𝐾𝐸 × 𝑈𝑒
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