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ABSTRACT 

To overcome some deficiencies of inverted generational distance 

(IGD) and hypervolume (HV), two comprehensive metrics are 

proposed in this paper, the hypercube distance (HCD), a metric 

based on hypercubes, and the angle-based distance (AD) for 

calculating the cosine values of the angles between solutions, both 

proposed metrics don’t need Pareto Front information and have 

low computational complexity. 
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• Theory of computation → Theory of randomized search 

heuristics.  

KEYWORDS 

Multi-objective optimization, Performance measures 

ACM Reference format: 

Liping Wang, Lin Zhang, Yu Ren, Qicang Qiu and Feiyue Qiu. 2021. Two 

comprehensive performance metrics for overcoming the deficiencies of 

IGD and HV. In Proceedings of the Genetic and Evolutionary 

Computation Conference 2021 (GECCO ’21). ACM, New York, NY, USA, 

2 pages. https://doi.org/10.1145/3449726.3459451 

1 INTRODUCTION 

The two most popular comprehensive metrics for multi-

objective evolutionary algorithms (MOEAs) are IGD [1] and HV 

[2], however, IGD requires Pareto Front information and may 

provide misleading results when the reference points are not 

reasonably set [3]; The computational complexity of HV is rather 
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high and the reference point or shape of the PF may lead to some 

errors when calculating the HV [2]. In addition, when the 

convergence of solution set 𝑆 is poor, it becomes difficult for both 

metrics to measure the diversity of 𝑆 [4]. 

2 PROPOSED METRICS 

2.1 Hypercube Distance 

For each individual, the hypercube distance is made up of two 

parts: one is the hypercube occupied by each solution, which 

mainly reflects the diversity of the solution set, and the distance to 

the origin, which mainly reflects the convergence of the solution 

set. The HCD is defined as follows: 

HCD(𝑆) =
1

|𝑆|
∑

ℎ𝑦𝑝𝑒𝑟𝑐𝑢𝑏𝑒(𝑥)

𝑑(𝑥)
𝑥∈𝑆

(1) 

ℎ𝑦𝑝𝑒𝑟𝑐𝑢𝑏𝑒(𝑥) = 2𝑚 × min
𝑥,𝑦∈𝑆∧𝑥≠𝑦

( max
𝑥,𝑦∈𝑆∧𝑥≠𝑦

(𝑥𝑖 − 𝑦𝑖)𝑚) (2) 

where 𝑑(𝑥) = ‖𝑥 − (0, ⋯ ,0)‖ . In addition, 𝑥𝑖 − 𝑦𝑖  is the 

difference between 𝑥 and 𝑦 on the 𝑚𝑡ℎ objective. A larger HCD is 

preferred, and its computational complexity is 𝑂(𝑚|𝑆|2). 

Fig. 1(a) provides an illustrative example of how HCD is 

calculated. For solution 𝑥1 , we can construct a maximum cube 

where there is only a solution 𝑥3 on the surface of the cube, then 

calculate the volume of the cube by calculating 𝑙1 , which 

represents half of the side length of the cube, where 𝑑1 represents 

the distance from 𝑥1 to the origin.  
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Figure 1: Illustration of how HCD is calculated. For instance, 

𝐇𝐂𝐃(𝒙𝟏) = 𝟐𝟑 × 𝒍𝟏 𝒅𝟏⁄ , 𝐇𝐂𝐃(𝒙𝟐) = 𝟐𝟑 × 𝒍𝟐 𝒅𝟐⁄ . If 𝒅(𝒙) = 𝟏, 

then 𝑨𝑫(𝑺) = (∑ 𝐜𝐨𝐬(𝜽𝒊) +𝐜𝐨𝐬(𝜽𝟒)𝟒
𝒊=𝟏 ) 𝟓⁄ . 
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2.2 Angular Distance 

For each individual, the minimum angle between itself and the 

other individuals can reflect the diversity of the solution set, and 

the greater the larger degree of the angle, which can be compared 

by calculating the cosine value. Meanwhile, the maximum angle 

between the whole population and each objective can be used to 

evaluate the spread of the solution set, and thus the AD should be 

divided by the maximum cosine of the largest angles. The AD 

also needs to multiply the distance to the origin to measure the 

convergence of the solution set. The AD is defined as follows: 

AD(𝑆) =

∑ max
𝑦∈𝑆∧𝑥≠𝑦

cos(𝑥, 𝑦) × 𝑑(𝑥)𝑥∈𝑆

|𝑆| × ∏ max
𝑥∈𝑆

cos s(𝑥, 𝑒𝑖)𝑖∈𝑚

(3) 

where 𝑑(𝑥) = ‖𝑥 − (0, ⋯ ,0)‖ , 𝑒𝑖  is the unit vector on the 𝑖𝑡ℎ 

objective. The larger value of AD is preferred, and its 

computational complexity is 𝑂(𝑚|𝑆|2) . Fig. 1(b) provides an 

illustrative example of how the AD is calculated.  

3 RESULTS AND DISCUSSION 

3.1 Theoretical study 

To better understand the capacity of measuring the diversity of 

the metrics proposed, we calculated the values of six different 

solution sets with different diversities on the same Pareto Front. 

The solutions on 𝑓1 + 𝑓2 + 𝑓3 = 1  and 𝑓1
2 + 𝑓2

2 + 𝑓3
2 = 1  are 

shown in Fig. 2 and Fig. 3 respectively, all solutions have good 

convergence. The results in Table 1 show proposed metrics have 

strong consistency with IGD and HV when measuring diversity.  

 

Figure 2: Six different solution set with PF 𝒇𝟏 + 𝒇𝟐 + 𝒇𝟑 = 𝟏.  

 

Figure 3: Six different solution set with PF 𝒇𝟏
𝟐 + 𝒇𝟐

𝟐 + 𝒇𝟑
𝟐 = 𝟏.  

Table 1: Values and Ranks of different metrics in Fig. 2&3 

Fig HCD AD IGD HV 

2(a) 5.1047e-3 (1) 7.2096e-1 (2) 3.7950e-2 (1) 7.9290e-1 (1) 

2(b) 1.4613e-3 (2) 6.6321e-1 (1) 5.8846e-2 (2) 7.4595e-1 (2) 

2(c) 7.2829e-4 (4) 7.7088e-1 (3) 1.1774e-1 (3) 5.4833e-1 (6) 

2(d) 1.0802e-3 (3) 8.0476e-1 (4) 1.2167e-1 (4) 6.7649e-1 (4) 

2(e) 2.3255e-4 (5) 8.1096e-1 (5) 1.3458e-1 (5) 7.3908e-1 (3) 

2(f) 7.0781e-5 (6) 8.1311e-1 (6) 2.0248e-1 (6) 6.5699e-1 (5) 

3(a) 9.9580e-3 (1) 9.9208e-1 (1) 5.1625e-2 (1) 4.2090e-1 (1) 

3(b) 2.5758e-3 (2) 1.0535e-0 (5) 7.3318e-2 (2) 3.8683e-1 (3) 

3(c) 3.4501e-4 (5) 1.8457e-0 (6) 2.8739e-1 (6) 1.8647e-1 (5) 

3(d) 4.7477e-4 (4) 9.9920e-1 (3) 2.4843e-1 (4) 9.5327e-2 (6) 

3(e) 5.2894e-4 (3) 9.9899e-1 (2) 1.7139e-1 (3) 3.9843e-1 (2) 

3(f) 1.5912e-4 (6) 1.0000e-0 (4) 2.5652e-1 (5) 3.2337e-1 (4) 

Table 2: Values of different metrics on DTLZ1-4 

𝑚 = 3 NSGA-II MOEA/D RVEA IBEA 

DTLZ1 

HCD 2.5283e-3 1.2927e-2 1.2894e-2 7.9978e-3 

AD 3.7628e-1 3.6116e-1 3.6106e-1 5.0350e-1 

IGD 2.7259e-2 2.0570e-2 2.0560e-2 1.6778e-1 

HV 8.2454e-1 8.4156e-1 8.4168e-1 4.8063e-1 

DTLZ2 

HCD 2.9685e-3 1.4245e-2 1.4244e-2 4.7359e-3  

AD 1.0044e+0 9.9043e-1 9.9044e-1 9.9672e-1 

IGD 6.8681e-2 5.4464e-2 5.4464e-2 8.0562e-2 

HV 5.3277e-1 5.5962e-1 5.5961e-1 5.5764e-1 

DTLZ3 

HCD 3.0196e-3 1.4175e-2 1.4203e-2 4.8153e-4 

AD 1.0041e+0 9.9460e-1  9.9327e-1 1.0070e+0 

IGD 6.9971e-2 5.4898e-2 5.4718e-2 4.7630e-1 

HV 5.3152e-1 5.5407e-1 5.5582e-1 2.4839e-1 

DTLZ4 

HCD 2.8363e-3 1.0180e-2 1.4772e-2 4.8827e-3 

AD 4.3043e+0 6.3932e+0 9.9057e-1 9.9655e-1 

IGD 9.7642e-2 1.9798e-1 5.9319e-2 7.9437e-2 

HV 5.2031e-1 4.9254e-1 5.5590e-1 5.5747e-1 

3.2 Empirical results 

We also studied the performance of the MOEAs on DTLZ for 

three objectives. The simulation includes NSGA-II [5], MOEA/D 

[6], RVEA [7] and IBEA [8]. To make a fair comparison, 30 

independent runs were performed for each MOEA with a 

maximum of 100, 000 function evaluations. In Table 2, Four 

metrics all have the same results on DTLZ2 and DTLZ3, which is 

proof of the practicability of the proposed metrics. For DTLZ4, 

our metrics show consistency with at least one traditional metric.  
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