
CLAHC – Custom Late Acceptance Hill Climbing:
first results on TSP

Sylvain Clay
sylvain.clay.etu@univ-lille.fr

Univ. Lille, CNRS, Centrale Lille, UMR 9189 - CRIStAL
F-59000 Lille, France

Lucien Mousin
lucien.mousin@univ-catholille.fr
Lille Catholic University, FGES

Lille, France

Nadarajen Veerapen
nadarajen.veerapen@univ-lille.fr

Univ. Lille, CNRS, Centrale Lille, UMR 9189 - CRIStAL
F-59000 Lille, France

Laetitia Jourdan
laetitia.jourdan@univ-lille.fr

Univ. Lille, CNRS, Centrale Lille, UMR 9189 - CRIStAL
F-59000 Lille, France

ABSTRACT
The Late Acceptance Hill Climbing heuristic is a Hill Climbing
algorithm that uses a record of the history of objective values of
previously encountered solutions in order to decide whether to
accept a new solution. Literature has shown that Late Acceptance
Hill Climbing is generally better at not getting stuck in local optima
because of the history. In this paper, we propose and investigate a
simple, yet effective, modification to Late Acceptance Hill Climbing,
where we change how values in the history are replaced. In our
tests, referring to the Traveling Salesman Problem, we analyze
the behavior of the proposed approach for different history sizes.
We also show that the simple change in the algorithm allows the
heuristic to find better solutions than the original one on most of
the instances tested.

CCS CONCEPTS
• Computing methodologies→ Search methodologies.

KEYWORDS
Local Search, Hill Climbing, Late Acceptance Hill Climbing
ACM Reference Format:
Sylvain Clay, Lucien Mousin, Nadarajen Veerapen, and Laetitia Jourdan.
2021. CLAHC – Custom Late Acceptance Hill Climbing: first results on TSP.
In 2021 Genetic and Evolutionary Computation Conference Companion (GECCO
’21 Companion), July 10–14, 2021, Lille, France. ACM, New York, NY, USA,
4 pages. https://doi.org/10.1145/3449726.3463129

1 INTRODUCTION
Combinatorial optimization aims to find good solutions to NP-hard
problems within an affordable execution time. Local searches are
among the simplest methods to achieve that. They involve try-
ing to reach a solution with the best possible objective function
value, starting from an initial solution and moving from solution

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
GECCO ’21 Companion, July 10–14,2021, Lille, France
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8351-6/21/07. . . $15.00
https://doi.org/10.1145/3449726.3463129

to solution using a neighborhood operator. Numerous local search
methods have been investigated in the literature, including Sim-
ulated Annealing (SA) [8], Threshold Accepting (TA) [4] or the
Great Deluge Algorithm (GDA) [3]. Late Acceptance Hill Climbing
(LAHC) [2] is another related method, and it has been shown to be
very competitive in previous work [5]. It is inspired by the simplest
local search method, Hill Climbing (HC) [7].

In this paper, we present Custom Late Acceptance Hill Climbing
(CLAHC), a new version of LAHC which produced an improvement
in the majority of cases we examined.

The paper is structured as follows. We first give more details
about the difference between these two heuristics in Section 2. Then
we present the experimental protocol and results in Section 3. Fi-
nally we present the conclusion and further possible investigations
into CLAHC in Section 4.

2 CLAHC - AN IMPROVED LAHC
LAHC uses the same principle as a simple HC, and improves it by
using a record of the history of objective function values of the
accepted solutions. We will refer to this as the history for short.
In practice, this is a sliding window of objective function values
that were encountered earlier during the execution of the heuristic.
The history is used as part of an acceptance criterion for any new
solution that we encounter. If a candidate solution has a better value
than the oldest value in the history, then this solution is accepted
and we carry on from there. This idea allows LAHC to avoid, to
some extent, the local optimum problem of HC, which quickly
reaches a final solution that can be far from the global optimum.
This problem occurs because HC is not allowed to accept solutions
that have a worse value than the current solution.

Beside its effectiveness, one of the most interesting properties of
LAHC is that it requires only one parameter, the history size, so it
is fairly simple to use. It has been shown in previous works [2] that
increasing the size of the history has an impact on both the final
solution and the execution time. More complex metaheuristics have
been experimented with using LAHC as a base, like PLAHC [1]
which consists in an Iterative Local Search [6] that uses LAHC with
an increasing size of history, starting at 1 and doubling at each
iteration of LAHC. The intention of this version is to free oneself
from the parameter of LAHC, the size of the history, and still be
able to find a good solution in the end.

1970

https://doi.org/10.1145/3449726.3463129
https://doi.org/10.1145/3449726.3463129

GECCO ’21 Companion, July 10–14,2021, Lille, France Sylvain Clay et al.

Algorithm 1 CLAHC
Require: l, the history size
Ensure: s, the final solution

s = new solution
c(s) = score of s
for i in [0, ... , l-1] do
f[i] = c(s)

end for
i = 0 //number of evaluations
count = 0 //number of successively non-improving evaluations
while i < 100000 or count < i * 0.02 do

s’ = new solution //neighbor of s
c(s’) = objective value of s’
if c(s’) ≥ c(s) then
count++

else
count = 0

end if
v = i mod l //the index where we are in the history
if c(s’) < f[v] or c(s’) ≤ c(s) then
s = s’ //we use this solution to continue

end if
if c(s’) < f[v] then //use s’ instead of s in LAHC

f[v] = c[s’] //s’ instead of s
end if
i++

end while
return s

In contrast, CLAHC works almost exactly like LAHC, with a
single difference which is the replacement criterion for a value in
the history at each iteration of the algorithm (Algorithm 1). With
LAHC, first we decide if a solution is accepted as our new current
solution to continue the algorithm by comparing it with our current
solution and with the value in the history at the current index. If
the new value is better than any of these two, then we replace the
value in the history by this new value. Then we do the same thing
whether we have accepted a new solution or not : we compare
the value of the current solution with the one in the history at the
current index. If the value in the history is worse than the value
of our solution, then we replace the value in the history with the
value of our solution.

With CLAHC, things are different: we follow the same approach
to decide whether to accept a new solution to continue the al-
gorithm, however to decide whether we replace the value in the
history, we do not compare it with the value of our current solution,
but with the one of the solution that was candidate (highlighted in
red in Algorithm 1). In other words, if the candidate solution was
accepted to continue the algorithm, then CLAHC does exactly the
same thing as LAHC. But if the solution was not accepted, then
CLAHC compares the value in the history with the value of the
solution that was not accepted, and replaces the value in the history
with the value of this solution if this one is better. In other words,
this means that CLAHC actually never replaces the value in the
history if the candidate solution was not accepted.

Table 1: Budget of the number of evaluations for each in-
stance

Instance Budget

rat783 54,000,000
u1060 82,500,000
fl1400 110,000,000
u1817 315,000,000
d2103 370,000,000
pcb3038 830,000,000
fl3795 1100,000,000

This behavior allows CLAHC to keep worse values than LAHC
would have allowed in its history. At first glance, it could seem like a
problem, but previous works [1] have posited the idea that diversity
in the history is necessary to allow the algorithm to continue its
execution. With CLAHC, we propose the idea that diversity in the
history also improves the performance of the algorithm, because it
increases the diversification strength of the algorithm. Conversely,
this behavior also has an impact on the execution time. For a history
of the same size, CLAHC is slower than LAHC. But that is not a
problem since CLAHC seems to perform better than LAHC even
with a smaller history.

3 EXPERIMENTAL RESULTS
3.1 Protocol
We consider the Traveling Salesman Problem (TSP) for our experi-
ments and, in particular, instances from TSPLIB [9]. Briefly, in the
TSP, we have a set of cities and we try to find the shortest cycle
that links all of them while passing through every city only once.
The neighborhood operator we used is the 2-opt operator, which
breaks two edges in the solution and reconnects the resulting paths
in the opposite order. The initial solution is random.

A configuration is an association of an algorithm (LAHC or
CLAHC), a history size and an instance. For every configuration,
we performed 30 runs using 30 different random seeds. We used
7 instances: rat783, u1060, fl1400, u1817, d2103, pcb3038 and fl3795.
The number in the instance name indicates the respective num-
ber of cities, i.e. the size of the instance. We also chose a limited
budget of function evaluations for every instance, as detailed in
Table 1, in order to take the size and difficulty of the instance into
consideration.

Both LAHC and CLAHC were implemented using the same MH-
Builder platform. This is a C++metaheuristics platform that is under
development in our research team. As described previously, and as
implemented, the only difference between LAHC and CLAHC is
the history replacement criterion. Experiments were carried out on
a Lenovo Z50-70 laptop, with a 4-core Intel Core i7-4510U 2.00GHz
CPU and 8 GB of RAM.

3.2 Results
We first wanted to assess the impact of the history size on the
performance and the execution time of CLAHC. In Table 2, we
compare two versions: CLAHC10 with a history size of 10, and

1971

CLAHC – Custom Late Acceptance Hill Climbing: first results on TSP GECCO ’21 Companion, July 10–14,2021, Lille, France

Table 2: CLAHC average results over 30 runs with standard
deviation in subscript, and percentage deviation from the
best known solution.

Instance CLAHC10 CLAHC100

rat783 9, 51888 8% 9,14154 3.8%
u1060 239, 1421937 6.7% 229,692841 2.5%
fl1400 21, 616349 7.4% 20,803242 3.4%
u1817 62, 344525 9% 59,378279 3.8%
d2103 89, 942780 11.8% 85,498529 6.3%
pcb3038 149, 202711 8.3% 142,672506 3.6%
fl3795 31, 371660 9% 29,990368 4.2%

CLAHC100 with a history size of 100. We could have used a bigger
history, but the algorithm would not have been able to converge
with the limited budget we chose. This table shows that, just like
LAHC, CLAHC gets better when we increase the size of its history.

In Figure 1 we compare execution traces on the rat783 instance.
This single instance is presented here in order to remain within the
paper’s page limit constraint, but the general observed behavior is
the same across the different instances tested. The three plots in
the figure use a logarithmic scale for the y-axis (objective value) in
order to better observe the inflection in the curves.

Figure 1a compares CLAHC execution traces for different sizes
of history. It shows that even though our algorithm reaches a better
final value, it gets slower when we increase the size of its history.
This is reminiscent of LAHC’s original behavior. Then we compared
CLAHC and LAHC. We first compared those two algorithms with
the same size of history in Figure 1b. It shows that LAHC is faster
in the beginning for the same history size, but is really far from
a good objective function value at the end of its execution, to the
point where it is not really better than a simple HC.

So we tried to find two different history sizes for LAHC and
CLAHC that would allow the two algorithms to converge and be the
most efficient with the same evaluation budget for every instance.
We used CLAHC100 and, depending on the instance, we compared
it with LAHC with a history size between 10,000 and 25,000. Table 3
shows these results. In this table, LAHC∗ is the version of LAHC
with the history size that performs the best on a given instance. For
example, on instance rat783, CLAHC100 is compared to LAHC10000,
because the number of evaluations that they need to converge is
the same. This table also contains the standard deviation of the
concerned algorithm’s solution. We also added the HC solution
and the percentage deviation from the best known solution for
every instance, so we have two reference points with which we
can compare our results. Wilcoxon and Friedman statistical tests
were performed on our results, and the best ones are in bold. We
see that, for a same budget, CLAHC performs better than LAHC
on every instance with the exception of fl1400.

We also wanted to see which one of LAHC or CLAHC was the
fastest to reach a good solution in the beginning of the execution.
Figure 1c shows that CLAHC100 is faster than LAHC10000 to reach
a good solution, and at the end, the final value of CLAHC is still
better. Even though it is not presented graphically here, even on
instance fl1400 for which CLAHC is not as good as LAHC in the

(a) Traces of CLAHC10, CLAHC40 and CLAHC100 on rat783.

(b) Traces of CLAHC100 and LAHC100 on rat783.

(c) Traces of CLAHC100 and LAHC10000 on rat783.

Figure 1: Execution traces on the rat783 instance, with a log-
arithmic scale on the y-axis.

1972

GECCO ’21 Companion, July 10–14,2021, Lille, France Sylvain Clay et al.

Table 3: CLAHC vs LAHC average final solutions over 30 runs, standard deviation and percentage deviation from the best
known solution. LAHC∗ is the best LAHC configuration (with a history size chosen between 10,000 and 25,000) for an instance
with the fixed budget.

Instance HC LAHC∗ CLAHC100

rat783 10, 05184 14% 9, 29652 5.5% 9,14154 3.8%
u1060 256, 1173607 14% 232, 7341345 3.8% 229,692841 2.5%
fl1400 22, 106392 9.8% 20,582141 2.2% 20, 803242 3.4%
u1817 69, 225751 21% 60, 442448 5.6% 59,378279 3.8%
d2103 99, 3381025 23% 87, 380729 8.6% 85,498529 6.3%
pcb3038 159, 3251074 15.7% 145, 316529 5.5% 142,672506 3.6%
fl3795 33, 634716 17% 30, 406335 5.6% 29,990368 4.2%

Figure 2: Boxplots for 30 runs of CLAHC100 and LAHC10000
over time on rat783.

end, CLAHC reaches a good value faster at the beginning of the
execution. We can try to interpret the worse results on fl1400 by
saying that since CLAHC is faster to converge in the beginning,
then it might have a bigger chance to be trapped in a local minimum
than LAHC.

Figure 2 contains boxplots also showing that CLAHC100 is faster
than LAHC10000 to reach a good solution over 30 runs, and that its
performance is very steady. This figure here uses a linear scale for
the y-axis (instead of the logarithmic scale in previous figures), so
we can see more clearly the difference of speed between CLAHC100
and LAHC10000.

All these observations tend to indicate that CLAHC performs bet-
ter than LAHC, because 6 out of the 7 instances that we used during
our tests got better results, and even for the only instance where it
is not as good as LAHC, CLAHC is faster in the beginning, meaning
it might be more effective to use it in more complex methods like
iterative local searches with different restart mechanisms.

We can also add the fact that the history size of CLAHC to reach
a solution as good as LAHC is smaller, meaning that CLAHC uses
less memory.

4 CONCLUSION AND FUTUREWORKS
In this paper, we proposed to alter the behavior of Late Acceptance
Hill Climbing by changing how new values are accepted in the
history it maintains.

Whereas with LAHC the last accepted solution value was added
to the history, our method adds the value of the last candidate solu-
tion. This naturally allows for worse values to stay in the history.

We tested this simple change on 7 TSP instances. Our results
show that, on the instances we used, our contribution CLAHC
reaches, in all cases but one, a better final solution, is faster in
the beginning of the execution, and uses less memory than LAHC,
which already is considered as one of the most robust local search
metaheuristics by some previous works [5].

This highlights the importance of the variety in the history of
LAHC, and we can imagine that using other and more complex
replacement criteria than the one we used for CLAHC could give
even better results at the end of the day.

Another interesting point to study would be the use of a greedy
heuristic for the initial solution, and study the differences between
CLAHC and LAHC in that case.

Also, CLAHC being a metaheuristic, it could be adapted easily to
other problems, since the only thing that would need to be changed
is the neighborhood operator. This will be investigated in further
works.

REFERENCES
[1] Mosab Bazargani and Fernando G. Lobo. 2017. Parameter-less late acceptance hill-

climbing. In Proceedings of the Genetic and Evolutionary Computation Conference,
GECCO 2017, Berlin, Germany, July 15-19, 2017. ACM, 219–226.

[2] Edmund K. Burke and Yuri Bykov. 2017. The late acceptance Hill-Climbing
heuristic. Eur. J. Oper. Res. 258, 1 (2017), 70–78.

[3] Gunter Dueck. 1993. New Optimization Heuristics: The Great Deluge Algorithm
and the Record-to-Record Travel. J. Comput. Phys. 104, 1 (1993), 86–92.

[4] Gunter Dueck and Tobias Scheuer. 1990. Threshold accepting: A general purpose
optimization algorithm appearing superior to simulated annealing. J. Comput.
Phys. 90, 1 (1990), 161–175.

[5] Alberto Franzin and Thomas Stützle. 2017. Comparison of Acceptance Criteria in
Randomized Local Searches. In EA 2017 Revised Selected Papers (Lecture Notes in
Computer Science), Vol. 10764. Springer, 16–29.

[6] Fred W. Glover and Gary A. Kochenberger (Eds.). 2003. Handbook of Metaheuris-
tics. International Series in Operations Research & Management Science, Vol. 57.
Kluwer / Springer. https://doi.org/10.1007/b101874

[7] Holger H. Hoos and Thomas Stützle. 2004. Stochastic Local Search: Foundations &
Applications. Elsevier / Morgan Kaufmann.

[8] Scott Kirkpatrick, D. Gelatt Jr., and Mario P. Vecchi. 1983. Optimization by Simu-
lated Annealing. Sci. 220, 4598 (1983), 671–680.

[9] Gerhard Reinelt. 1991. TSPLIB - A Traveling Salesman Problem Library. INFORMS
J. Comput. 3, 4 (1991), 376–384. https://doi.org/10.1287/ijoc.3.4.376

1973

https://doi.org/10.1007/b101874
https://doi.org/10.1287/ijoc.3.4.376

	Abstract
	1 Introduction
	2 CLAHC - an improved LAHC
	3 Experimental results
	3.1 Protocol
	3.2 Results

	4 Conclusion and future works
	References

