
Negative Learning Ant Colony Optimization for the Minimum
Positive Influence Dominating Set Problem

Albert López Serrano
∗

Universitat Autònoma de Barcelona

Bellaterra, Spain

albert.lopezi@e-campus.uab.cat

Teddy Nurcahyadi

Artificial Intelligence Research Institute (IIIA-CSIC)

Bellaterra, Spain

teddy.nurcahyadi@iiia.csic.es

Salim Bouamama

Department of Computer Science, Ferhat Abbas University

Sétif 1

Sétif, Algeria

salim.bouamama@univ-setif.dz

Christian Blum

Artificial Intelligence Research Institute (IIIA-CSIC)

Bellaterra, Spain

christian.blum@iiia.csic.es

ABSTRACT
Recent research has shown that adding negative learning to ant

colony optimization, in addition to the traditional positive learning

mechanism, may improve the algorithms’ performance significantly.

In this paper we consider the application of this novel ant colony

optimization variant to an NP-hard combinatorial optimization

problem known as the minimum positive influence dominating set

problem. This problem has applications especially in the context

of social networks. Our results show, first, that the negative learn-

ing variant significantly improves over the standard ant colony

optimization variant. Second, the obtained results show that our

algorithm outperforms all competitors from the literature.

CCS CONCEPTS
• Theory of computation→ Discrete optimization.

KEYWORDS
ant colony optimization; negative learning; minimum positive in-

fluence dominating set

ACM Reference Format:
Albert López Serrano, Teddy Nurcahyadi, Salim Bouamama, and Christian

Blum. 2021. Negative Learning Ant Colony Optimization for the Minimum

Positive Influence Dominating Set Problem. In 2021 Genetic and Evolutionary
Computation Conference Companion (GECCO ’21 Companion), July 10–14,
2021, Lille, France. ACM, New York, NY, USA, 4 pages. https://doi.org/10.

1145/3449726.3463130

1 INTRODUCTION
The minimum positive influence dominating set (MPIDS) prob-

lem [15, 16] is an NP-hard combinatorial optimization problem

∗
Undergraduate Student

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

GECCO ’21 Companion, July 10–14, 2021, Lille, France
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8351-6/21/07. . . $15.00

https://doi.org/10.1145/3449726.3463130

with applications in social networks. Hereby, each vertex repre-

sents an individual and edges indicate relationships, respectively

interactions, between those individuals. The problems’ background

is that ideas and information propagated in social networks can

have a significant impact. Social norms theory has shown that

the behavior of individuals can be affected by perceptions of oth-

ers’ thoughts and behaviors [4]. Thus, exploiting the relationships

among people in social networks can provide great benefits to both

economy and society. The aim of the MPIDS problem is to identify

a small subset of key influential individuals to speed up the spread

of positive influence [5, 8]. Other applications of the MPIDS prob-

lem can be found in e-learning software [17], online business [13],

drinking, smoking, and drug related problems [15]. In technical

terms, the MPIDS problem can be described as follows. Given a sim-

ple, connected undirected graph 𝐺 = (𝑉 , 𝐸), the problem requires

to find a dominating set of minimum cardinality such that at least

half of the neighbors of each vertex form part of the dominating

set. Most of the recent research efforts concerning the MPIDS prob-

lem were focused on greedy heuristics [2, 3, 12, 14, 16] and on two

evolutionary approaches [6, 7].

In this paper we apply a very recent variant of ant colony opti-

mization (ACO) to the MPIDS problem. This ACO variant [11] is

characterized by the fact that it incorporates a negative learning

component in addition to the traditional positive learning mecha-

nism that makes use of good solutions for updating the pheromone

values. In [11], this negative learning ACO approach was shown to

outperform earlier negative learning approaches such as, for exam-

ple, [10]. The negative learning component of this new variant is

based on applying an exact solver to sub-instances of the original

problem instance. The results that are obtained in this way for sub-

instances, are used for updating an additional set of pheromone

values: the negative pheromone values. Both sets of pheromone

values are used for generating solutions at each iteration. Our re-

sults show that the negative learning variant of ACO outperforms

both the standard ACO variant and the metaheuristic approaches

from the literature for the MPIDS problem.

The rest of this paper is organized as follows. In Section 2 we

provide the standard integer linear programming (ILP)model for the

MPIDS problem. In Section 3, we outline our algorithmic proposal.

Finally, in Section 4 we present and discuss the experimental results.

1974

https://doi.org/10.1145/3449726.3463130
https://doi.org/10.1145/3449726.3463130
https://doi.org/10.1145/3449726.3463130

GECCO ’21 Companion, July 10–14, 2021, Lille, France López Serrano et al.

Algorithm 1 ACO
+
neg

for the MPIDS problem

1: input: a problem instance 𝐺 = (𝑉 , 𝐸)
2: parameters: 𝑛𝑎 , 𝑑rate, 𝜌 , 𝜌neg, 𝑡ILP
3: 𝑆bs := 𝑉 , 𝑆rb := 𝑉 , cf := 0, bs_update := false

4: InitializePheromoneValues(T ,T neg)
5: while termination condition not met do
6: Siter

:= ∅
7: for 𝑘 := 1, . . . , 𝑛𝑎 do
8: 𝑆𝑘 := ConstructSolution(T ,T neg)
9: Siter

:= Siter ∪ {𝑆𝑘 }
10: end for
11: 𝑆sub := SolveSubinstance(Siter)
12: 𝑆 ib := argmin{𝑓 (𝑆) | 𝑆 ∈ Siter ∪ {𝑆sub}}
13: if 𝑓 (𝑆 ib) < 𝑓 (𝑆rb) then 𝑆rb := 𝑆 ib

14: if 𝑓 (𝑆 ib) < 𝑓 (𝑆bs) then 𝑆bs := 𝑆 ib

15: ApplyPheromoneUpdate(cf , bs_update, 𝑆 ib,𝑆rb,𝑆bs, 𝑆sub)
16: cf := ComputeConvergenceFactor(T)

17: if cf > 0.999 then
18: if bs_update = true then
19: 𝑆rb := null, and bs_update := false

20: InitializePheromoneValues(T ,T neg)
21: else
22: bs_update := true

23: end if
24: end if
25: end while
26: output: 𝑆bs, the best solution found by the algorithm

2 MPIDS PROBLEM: ILP MODEL
The MPIDS problem can easily be stated in terms of an ILP as

follows. The model is based on a binary variable 𝑥𝑖 associated to

each vertex 𝑣𝑖 ∈ 𝑉 .

Minimize
𝑛∑
𝑖=1

𝑥𝑖 (1)

Subject to
∑

𝑣𝑗 ∈𝑁 (𝑣𝑖)
𝑥 𝑗 ≥

⌈
𝑑𝑒𝑔(𝑣𝑖)

2

⌉
∀𝑣𝑖 ∈ 𝑉 (2)

𝑥𝑖 ∈ {0, 1} (3)

Hereby, 𝑁 (𝑣𝑖) is the neighborhood of 𝑣𝑖 in the input graph 𝐺 , and

𝑑𝑒𝑔(𝑣𝑖) is the degree of vertex 𝑣𝑖 , that is, the number of its neighbors.

Equation (2) ensures that a feasible solution contains at least half

of the neighbors of each vertex 𝑣𝑖 ∈ 𝑉 .

3 THE PROPOSED ALGORITHM
Our approach—called ACO

+
neg

—is based on a standard MAX-

MIN Ant System (MMAS) implemented in the hyper-cube frame-

work [1]; see Algorithm 1 for the pseudo-code. As any other MMAS

algorithm, ACO
+
neg

keeps three different solutions at any time: (1)

the best solution generated at the current iteration, that is, the

iteration-best solution 𝑆 ib, (2) the best solution generated since the

last restart of the algorithm, that is, the restart-best solution 𝑆rb,

and (3) the best solution generated overall, that is, the best-so-far
solution 𝑆bs. Both 𝑆bs and 𝑆rb are initialized to 𝑉 , which is the

worst solution possible; see line 3. Moreover, a Boolean control

variable (bs_update) used for controlling the pheromone update

is initialized to false. The model T (standard pheromone values)

contains a value 𝜏𝑖 for each vertex 𝑣𝑖 ∈ 𝑉 . Similarly, the model of

the negative pheromone values (T neg
) contains a value 𝜏

neg

𝑖
for

each vertex 𝑣𝑖 ∈ 𝑉 . Function InitializePheromoneValues(T ,T neg)
initializes all pheromone values from T to 0.5, and all pheromone

values from T neg
to 𝜏min = 0.001 . At each iteration of the algo-

rithm, 𝑛𝑎 solutions are generated based on greedy information

and on pheromone information, and stored in set Siter
; lines 6–10.

A detailed description of function ConstructSolution(T ,T neg) is
provided below. Subsequently, a sub-instance of the original prob-

lem instance is generated in function SolveSubinstance(Siter) on
the basis of Siter

as follows. Vertices that are found in all solu-

tions from Siter
are stored in set 𝑆in and vertices that are found

in none of the solutions from Siter
are stored in 𝑆out. Then, the

ILP model from the previous section is solved by applying the ILP

solver CPLEX 12.10, after adding a constraint 𝑥𝑖 = 1 for all vertices

from 𝑆in and a constraint 𝑥𝑖 = 0 for all vertices from 𝑆out. The

computation time limit of CPLEX is set to 𝑡ILP seconds, which is

one of the parameters of the algorithm. When CPLEX stops after

maximally 𝑡ILP seconds, it either returns the optimal solution to

the sub-instance, or the best solution found within the allowed

computation time. In both cases the obtained solution is denoted

by 𝑆sub. After updating solutions 𝑆 ib, 𝑆rb and 𝑆bs in lines 12–14,

the pheromone update is conducted in function ApplyPheromone-
Update(cf , bs_update, 𝑆 ib,𝑆rb,𝑆bs, 𝑆sub); see below for a detailed

description. Finally, the value of the convergence factor is deter-

mined in function ComputeConvergenceFactor(T), and—in case

𝑐 𝑓 > 0.999 and bs_update = true—the algorithm is restarted (see

lines 17–24). In the following, the main functions of the algorithm

are described in more detail.

ConstructSolution(T): The solution construction mechanism is

adopted from the newest available greedy algorithm for the MPIDS

problem [2]. First, a pre-processing procedure adds those vertices

to a set 𝑆init that must form part of an optimal solution. Note that

this pre-processing procedure is, of course, only executed once by

ACO
+
neg

. Each solution construction process starts by initializing

the partial solution under construction to 𝑆init, that is, 𝑆 := 𝑆init.

Given any partial solution 𝑆 ⊂ 𝑉 , the number of neighbors of 𝑣

that must be added to 𝑆 in order to cover 𝑣 is computed as ℎ𝑆 (𝑣) :=
⌈𝑑𝑒𝑔 (𝑣)

2
⌉ − |𝑁𝑆 (𝑣) |, where 𝑁𝑆 (𝑣) := 𝑁 (𝑣) ∩ 𝑆 denotes the set of

neighbors of 𝑣 ∈ 𝑉 belonging to 𝑆 . We say that 𝑣 is covered if

ℎ𝑆 (𝑣) ≤ 0, and not covered otherwise. Moreover, let𝐶𝑆 ⊂ 𝑉 denote

the set of uncovered vertices with respect to 𝑆 . At each step of the

solution construction procedure, first a vertex 𝑣𝑖 ∈ 𝐶𝑆 is chosen

such that 𝑑𝑒𝑔(𝑣𝑖) ≤ 𝑑𝑒𝑔(𝑣 𝑗) for all 𝑣 𝑗 ∈ 𝐶𝑆 . Then, ℎ𝑆 (𝑣𝑖) vertices
from 𝑁 (𝑣𝑖) \ 𝑁𝑆 (𝑣𝑖) are chosen, based on greedy information and

on pheromone information. The probability to choose a vertex

𝑣𝑘 ∈ 𝑁 (𝑣𝑖) \ 𝑁𝑆 (𝑣𝑖) is defined as follows:

p(𝑣𝑘 | 𝑆) :=
𝜂𝑘 · 𝜏𝑘 · (1 − 𝜏

neg

𝑘
)∑

𝑣𝑙 ∈𝑁 (𝑣𝑖)\𝑁𝑆 (𝑣𝑖) 𝜂𝑙 · 𝜏𝑙 · (1 − 𝜏
neg

𝑙
)

(4)

where 𝜂𝑘 := |{𝑣 ∈ 𝑁 (𝑣𝑘) : ℎ𝑆 (𝑣) > 0}| + 1. Based on these proba-

bilities, the selection of 𝑣∗—that is, the vertex to be added to 𝑆—is

1975

Negative Learning Ant Colony Optimization for the Minimum Positive Influence Dominating Set Problem GECCO ’21 Companion, July 10–14, 2021, Lille, France

done as follows. First, a random number 𝑟 ∈ [0, 1] is chosen uni-

formly at random. In case 𝑟 ≤ 𝑑rate, 𝑣
∗
:= argmax{p(𝑣 | 𝑆) | 𝑣 ∈

𝑁 (𝑣𝑖) \𝑁𝑆 (𝑣𝑖)}. Otherwise, 𝑣∗ is chosen by roulette wheel selection.
Note that 𝑑rate ∈ [0, 1]—the so-called determinism rate—is an im-

portant parameter of the algorithm.

ApplyPheromoneUpdate(cf , bs_update, 𝑆 ib,𝑆rb,𝑆bs, 𝑆sub): The phe-
romone value update has two parts. First, the update of the standard

pheromone values from T is the same as in any other MMAS al-

gorithms implemented in the hypercube framework. In particular,

solutions 𝑆 ib, 𝑆rb, and 𝑆bs are used in the following way. The up-

date weight of each solution is determined on the basis of the

convergence factor (cf) and the value of bs_update as shown in

the following.

bs_update = false bs_update
cf < 0.4 cf ∈ [0.4, 0.6) cf ∈ [0.6, 0.8) cf ≥ 0.8 = true

𝜅𝑖𝑏 1 2/3 1/3 0 0

𝜅𝑟𝑏 0 1/3 2/3 1 0

𝜅𝑏𝑠 0 0 0 0 1

Each pheromone value 𝜏𝑖 is updated as follows: 𝜏𝑖 := 𝜏𝑖 +𝜌 · (𝜉𝑖 −𝜏𝑖),
where 𝜉𝑖 := 𝜅𝑖𝑏 · Δ(𝑆 ib, 𝑣𝑖) + 𝜅𝑟𝑏 · Δ(𝑆rb, 𝑣𝑖) + 𝜅𝑏𝑠 · Δ(𝑆bs, 𝑣𝑖), and
𝜌 ∈ [0, 1] is the learning rate. Note that 𝜅𝑖𝑏 is the weight of solution

𝑆 ib, 𝜅𝑟𝑏 the one of solution 𝑆rb, and 𝜅𝑏𝑠 the one of solution 𝑆bs.

Moreover, Δ(𝑆, 𝑣𝑖) evaluates to 1 if and only if 𝑣𝑖 ∈ 𝑆 . Otherwise,

the function evaluates to 0. Note also that (according to the table

above) 𝜅𝑖𝑏 + 𝜅𝑟𝑏 + 𝜅𝑏𝑠 = 1. After this pheromone update, those

values that exceed 𝜏max = 0.999 are set back to 𝜏max, and those

values that have dropped below 𝜏min = 0.001 are set back to 𝜏min.

This prevents the algorithm from reaching the state of complete

convergence.

The second part of the pheromone update concerns the modifi-

cation of the negative pheromone values from T neg
. In particular,

this update only concerns the negative pheromone values of those

vertices that form part of at least one solution of Siter
. The update

formula is as follows: 𝜏
neg

𝑖
:= 𝜏

neg

𝑖
+𝜌neg · (𝜉neg

𝑖
−𝜏neg

𝑖
), where 𝜌neg

is the negative learning rate and 𝜉
neg

𝑖
= 1 if 𝑐𝑖 ∉ 𝑆sub, resp. 𝜉

neg

𝑖
= 0

otherwise. In other words, the negative pheromone values of those

components that do not form part of 𝑆sub are increased.

ComputeConvergenceFactor(T): The convergence factor cf is com-

puted in all MMAS algorithm implemented in the hypercube frame-

work in the same way:

cf := 2

©«©«
∑

𝜏 ∈T
max{𝜏max − 𝜏, 𝜏 − 𝜏min}

|T | · (𝜏max − 𝜏min)
ª®¬ − 0.5

ª®¬
Thismeans that the value of cf is zerowhen all standard pheromones

have value 0.5. In contrast, when all pheromones have either value

𝜏min or 𝜏max, cf evaluates to one. In all other cases, cf has a value

between 0 and 1.

4 EXPERIMENTAL EVALUATION
Three versions of the proposed algorithm are evaluated. In addi-

tion to the full version (ACO
+
neg

), we also evaluated the following

versions: (1) the standard MMAS version (henceforth simply called

ACO). This version is obtained by not executing the update of the

Table 1: Tuning results obtained by irace. Left: Small-
/medium size networks. Right: large networks.

Algorithm 𝑛𝑎 𝑑rate 𝜌 𝜌neg 𝑡ILP
ACO 10 0.4 0.1 n.a. n.a.

ACOneg 20 0.1 0.1 0.5 30

ACO
+
neg

20 0.0 0.1 0.2 17

Algorithm 𝑛𝑎 𝑑rate 𝜌 𝜌neg 𝑡ILP
ACO 2 0.6 0.1 n.a. n.a.

ACOneg 10 0.7 0.3 0.5 20

ACO
+
neg

14 0.6 0.2 0.5 13

negative pheromone values and by setting 𝑆sub = ∅ at each itera-

tion (that is, line 11 of Algorithm 1 is not executed); (2) ACOneg,

which is obtained by removing 𝑆sub from the argmax-operation in

line 12, that is, 𝑆sub is not used for the standard pheromone update,

only for the update of the negative pheromone values. All experi-

ments concerning the three algorithm versions were performed on

a cluster of machines with Intel
®
Xeon

®
CPU 5670 CPUs with 12

cores of 2.933 GHz and a minimum of 32 GB RAM. Moreover, for

solving the sub-instances in ACOneg and ACO
+
neg

we used CPLEX

12.10 in one-threaded mode. The three algorithms were evaluated

on 17 social networks that are usually used in the literature on the

MIPDS problem. These networks are of small and medium size. In

addition, we evaluated the algorithms on 10 larger social networks

from the SNAP library (https://snap.stanford.edu/data/).

Our algorithms require well-working values for 𝑛𝑎 (number of

solution constructions per iteration), 𝑑rate (determinism rate), and

𝜌 (learning rate). ACOneg and ACO
+
neg

require additionally a value

for 𝜌neg (negative learning rate) and a value for 𝑡ILP (time limit

for CPLEX per iteration). We made use of the scientific tuning

software irace [9] for the purpose of parameter tuning. This tool

was used for generating two parameter settings for each variant:

one of the 17 small/medium sized instances, and another one for

the 10 large networks. Networks CA-AstroPh, Email-Enron amd

socfb-Brandeis99 were used for the first tuning experiment, and

networks Amazon0312 and com-youtube were used for the second

one. Finally, for each tuning experiment the budget was fixed to

2000 runs, each one with a time limit of 600 CPU seconds. The con-

sidered parameter value domains were as follows: 𝑛𝑎 ∈ {2, . . . , 20},
𝑑rate ∈ {0.0, 0.1, 0.2, . . . , 0.8, 0.9}, 𝜌, 𝜌neg ∈ {0.1, . . . , 0.5}, and 𝑡ILP ∈
{1, . . . , 30} (in seconds). The obtained parameter value settings are

shown in Table 1.

The three ACO versions were applied 10 times, with a CPU time

limit of 600 CPU seconds, to each of the 27 problem instances. The

results, in comparison to those of HSIA [7], ILPMA [6], and CPLEX

(with a time limit of 2 hours per instance) are shown in Table 2. The

first 17 of these instances are generally used in the related literature

and are of small, resp. medium, size. CPLEX was able to solve 11 of

these instances to optimality, as indicated by a value of 0.00 in the

column labeled ’Gap (%)’. Note that both HSIA and ILPMA were

only applied to 9, resp. 12, of these first 17 problem instances. The

remaining 10 instances are larger and were taken from the SNAP

database. The results of our three ACO versions are marked by a

light gray column background. They are separated into the best

result obtained in 10 runs, the average results over 10 runs, and the

average computation time.

1976

https://snap.stanford.edu/data/

GECCO ’21 Companion, July 10–14, 2021, Lille, France López Serrano et al.

Table 2: Numerical results

Network CPLEX best average average time

Result Gap (%) HSIA ILPMA ACO ACOneg ACO
+
neg

HSIA ILPMA ACO ACOneg ACO
+
neg

ILPMA ACO ACOneg ACO
+
neg

Karate 15 0.00 n.a. 15 15 15 15 n.a. 15.0 15.0 15.0 15.0 0.03 0.00 0.002 0.002

Dolphins 30 0.00 n.a. 30 30 30 30 n.a. 30.0 30.0 30.0 30.0 0.13 0.004 0.008 0.004

Football 63 0.00 n.a. 65 64 63 63 n.a. 65.65 64.6 63.0 63.0 0.54 74.08 40.71 19.73

Jazz 79 0.00 n.a. n.a. 79 79 79 n.a. n.a. 79.9 79.0 79.0 n.a. 5.92 0.39 0.12

CA-AstroPh 6740 0.30 6905 6857 6886 6742 6742 6906.6 6865.45 6897.1 6744.1 6743.8 300.41 502.58 282.73 438.62

CA-GrQc 2587 0.00 2597 2594 2588 2587 2587 2598.4 2596.05 2589.1 2587.0 2587.0 45.07 144.90 2.96 0.65

CA-HepPh 4718 0.01 4791 4770 4769 4720 4720 4792.4 4773.85 4772.9 4721.4 4720.3 157.43 526.81 341.16 347.01

CA-HepTh 4471 0.00 4515 4502 4494 4471 4471 4516.2 4506.25 4496.7 4471.0 4471.0 107.93 468.96 13.44 14.62

CA-CondMat 9584 0.06 9729 9683 9692 9587 9588 9734.0 9689.6 9696.3 9588.8 9588.4 506.37 432.98 394.02 471.59

Email-Enron 11682 0.00 11865 11814 11826 11685 11684 11873.4 11818.95 11832.9 11685.2 11684.1 760.08 440.34 221.48 164.53

ncstrlwg2 2994 0.00 3004 3001 2998 2994 2994 3005.4 3002.85 2998.9 2994.9 2994.1 65.69 327.34 18.70 259.49

actors-data 3092 0.24 3143 3130 3145 3093 3093 3144.5 3134.5 3149.0 3093.7 3093.7 137.74 419.42 273.89 260.08

ego-facebook 1973 0.00 1726
𝑎

1737
𝑎

1974 1973 1973 1726.6
𝑎

1741.55
𝑎

1974.9 1973.6 1973.1 56.91 16.44 33.27 65.28

socfb-Brandeis99 1400 1.41 n.a. n.a. 1456 1398 1397 n.a. n.a. 1462.7 1399.0 1397.7 n.a. 398.99 347.46 480.68

socfb-nips-ego 1398 0.00 n.a. n.a. 1398 1398 1398 n.a. n.a. 1398.0 1398.0 1398.0 n.a. 2.86 2.71 1.28

socfb-Mich67 1329 1.56 n.a. n.a. 1384 1329 1327 n.a. n.a. 1387.9 1329.9 1328.5 n.a. 420.84 335.62 366.89

soc-gplus 8244 0.00 n.a. n.a. 8294 8244 8244 n.a. n.a. 8298.3 8244.1 8244.0 n.a. 446.28 169.60 21.20

musae_git 9752 0.00 n.a. n.a. 10383 10006 9872 n.a. n.a. 10409.3 10031.3 9828.8 n.a. 589.06 414.45 357.81

loc-gowalla_edges 67617 0.07 n.a. n.a. 68815 67946 67943 n.a. n.a. 68836.9 67972.0 67964.0 n.a. 547.53 550.78 503.48

gemsec_facebook_artist 15194 1.20 n.a. n.a. 16010 15537 15480 n.a. n.a. 16029.0 15593.9 15505.2 n.a. 554.54 488.09 511.42

deezer_HR 54573 95.68 n.a. n.a. 23413 22906 22840 n.a. n.a. 23434.7 23152.1 22904.9 n.a. 518.96 426.34 426.67

com-youtube 351281 0.00 n.a. n.a. 353715 352110 351556 n.a. n.a. 353975.2 352243.7 351567.1 n.a. 601.46 592.07 599.96

com-dblp 120492 0.08 n.a. n.a. 121854 120998 120853 n.a. n.a. 121874.6 121056.7 120932.0 n.a. 465.34 564.34 513.59

Amazon0302 262111 97.50 n.a. n.a. 134146 132797 131836 n.a. n.a. 134241.0 132832.6 131901.3 n.a. 370.61 395.71 576.98

Amazon0312 400727 95.41 n.a. n.a. 180443 180613 180049 n.a. n.a. 180546.3 180690.8 180284.1 n.a. 597.82 597.19 611.33

Amazon0505 410236 95.19 n.a. n.a. 182851 182839 182152 n.a. n.a. 182955.3 182928.9 182464.5 n.a. 596.00 601.65 617.66

Amazon0601 403394 96.94 n.a. n.a. 179768 179726 179112 n.a. n.a. 179847.5 179799.0 179662.2 n.a. 598.81 598.46 612.19

average 49351.48 4906.88 48966.59 49381.25 49137.72 49017.73 n.a. 372.92 285.45 305.29

𝑎
: the papers on HSIA and ILPMA must have used a different ego-facebook instance, as their result values are below the optimal solution value derived by CPLEX

The following observations can be made. First, the standard ACO

version obtains results similar to those of HSIA and ILPMA. The

two ACO versions with negative learning (ACOneg and ACO
+
neg

)

clearly outperform the other three competitors. Concerning the

comparison between ACOneg and ACO
+
neg

it can be stated that, in

the context of the 17 small/medium size instances, ACO
+
neg

is only

slightly better than ACOneg. However, this difference in quality

grows significantly in the context of the 10 larger problem instances.

Moreover, CPLEX clearly fails to provide solutions of reasonable

quality in the case of five large problem instances, that is, the

deezer_HR instance, and the four Amazon instances. All three ACO

versions are clearly superior to CPLEX in these cases.

Summarizing we can state that ACO
+
neg

is the new state-of-the-

art metaheuristic for solving the MPIDS problem. Moreover, this

shows again that making use of negative learning in addition to

positive learning can be very beneficial.

ACKNOWLEDGMENTS
This work was funded by project CI-SUSTAIN of the Spanish Min-

istry of Science and Innovation (PID2019-104156GB-I00).

REFERENCES
[1] Christian Blum and Marco Dorigo. 2004. The hyper-cube framework for ant

colony optimization. IEEE Transactions on Systems, Man, and Cybernetics, Part B
(Cybernetics) 34, 2 (2004), 1161–1172.

[2] Salim Bouamama and Christian Blum. 2021. An Improved Greedy Heuristic for

the Minimum Positive Influence Dominating Set Problem in Social Networks.

Algorithms 14, 3 (2021), 79.
[3] Mai Fei and Chen Weidong. 2016. An improved algorithm for finding minimum

positive influence dominating sets in social networks. Journal of South China
Normal University 48, 3 (2016), 59–63.

[4] Angela K. Fournier, Erin Hall, Patricia Ricke, and Brittany Storey. 2013. Alcohol

and the social network: Online social networking sites and college students’

perceived drinking norms. Psychology of Popular Media Culture 2, 2 (2013), 86.
[5] Dilek Günneç, Subramanian Raghavan, and Rui Zhang. 2020. Least-cost influence

maximization on social networks. INFORMS Journal on Computing 32, 2 (2020),

289–302.

[6] Geng Lin, Jian Guan, and Huibin Feng. 2018. An ILP based memetic algorithm for

finding minimum positive influence dominating sets in social networks. Physica
A: Statistical Mechanics and its Applications 500 (2018), 199–209.

[7] Geng Lin, Jinyan Luo, Haiping Xu, and Meiqin Xu. 2020. A Hybrid Swarm

Intelligence-Based Algorithm for Finding Minimum Positive Influence Dominat-

ing Sets. In Proceedings of ICNC-FSKD 2019 – Advances in Natural Computation,
Fuzzy Systems and Knowledge Discovery, Yong Liu, Lipo Wang, Liang Zhao, and

Zhengtao Yu (Eds.). Springer International Publishing, 506–511.

[8] Cheng Long and Raymond Chi-Wing Wong. 2011. Minimizing seed set for viral

marketing. In 2011 IEEE 11th International Conference on Data Mining. IEEE press,

427–436.

[9] Manuel López-Ibánez et al. 2016. The irace package: Iterated racing for automatic

algorithm configuration. Operations Research Perspectives 3 (2016), 43 – 58.

[10] James Montgomery and Marcus Randall. 2002. Anti-pheromone as a Tool for

Better Exploration of Search Space. In ANTS 2002 – 3rd International Workshop on
Ant Algorithms (Lecture Notes in Computer Science), Marco Dorigo, Gianni Di Caro,

and Michael Sampels (Eds.), Vol. 2463. Springer Berlin Heidelberg, 100–110.

[11] Teddy Nurcahyadi and Christian Blum. 2021. Adding Negative Learning to Ant

Colony Optimization: A Comprehensive Study. Mathematics 9, 4 (2021), 361.
[12] Jiehui Pan and Tian-Ming Bu. 2019. A Fast Greedy Algorithm for Finding Mini-

mum Positive Influence Dominating Sets in Social Networks. In IEEE INFOCOM
2019-IEEE Conference on Computer Communications Workshops (INFOCOM WK-
SHPS). IEEE, 360–364.

[13] Amir Afrasiabi Rad and Morad Benyoucef. 2011. Towards detecting influential

users in social networks. In International Conference on E-Technologies. Springer,
227–240.

[14] Hassan Raei, Nasser Yazdani, and Masoud Asadpour. 2012. A new algorithm

for positive influence dominating set in social networks. In 2012 IEEE/ACM
International Conference on Advances in Social Networks Analysis and Mining.
IEEE, 253–257.

[15] Feng Wang, Erika Camacho, and Kuai Xu. 2009. Positive influence dominat-

ing set in online social networks. In International Conference on Combinatorial
Optimization and Applications. Springer, 313–321.

[16] Feng Wang, Hongwei Du, Erika Camacho, Kuai Xu, Wonjun Lee, Yan Shi, and

Shan Shan. 2011. On positive influence dominating sets in social networks.

Theoretical Computer Science 412, 3 (2011), 265–269.
[17] Guangyuan Wang. 2014. Domination problems in social networks. Ph.D. Disserta-

tion. University of Southern Queensland.

1977

	Abstract
	1 Introduction
	2 MPIDS problem: ILP Model
	3 The proposed algorithm
	4 Experimental Evaluation
	Acknowledgments
	References

