
A Parallel Genetic Algorithm to Speed Up the
Resolution of the Algorithm Selection Problem
Alejandro Marrero
amarrerd@ull.edu.es

Departamento de Ingeniería
Informática y de Sistemas,
Universidad de La Laguna
San Cristóbal de La Laguna

Tenerife, SPAIN

Eduardo Segredo
esegredo@ull.edu.es

Departamento de Ingeniería
Informática y de Sistemas,
Universidad de La Laguna
San Cristóbal de La Laguna

Tenerife, SPAIN

Coromoto Leon
cleon@ull.edu.es

Departamento de Ingeniería
Informática y de Sistemas,
Universidad de La Laguna
San Cristóbal de La Laguna

Tenerife, SPAIN

ABSTRACT
Deciding which optimisation technique to use for solving
a particular optimisation problem is an arduous task that
has been faced in the field of optimisation for decades. The
above problem is known as the Algorithm Selection Problem
(ASP). The optimisation techniques considered in previous
works have been, mainly, approaches that can be executed
rapidly. However, considering more sophisticated optimisa-
tion approaches for solving the ASP, such as Evolutionary
Algorithms, drastically increases the computational cost. We
are interested in solving the ASP by considering different
configurations of a Genetic Algorithm (GA) applied to the
well-known 0/1 Knapsack Problem (KNP). This involves the
execution of a significant number of configurations of the
GA, in order to evaluate their performance, when applied
to a wide range of instances with different features of the
KNP, which is a computationally expensive task. Therefore,
the main aim of the current work is to provide, as first step
for solving the ASP, an efficient parallel GA, which is able to
attain competitive results, in terms of the optimal objective
value, in a short amount of time. Computational results show
that our approach is able to scale efficiently and considerably
reduces the average elapsed time for solving KNP instances.

CCS CONCEPTS
• Computing methodologies → Shared memory algo-
rithms.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
GECCO ’21 Companion, July 10–14, 2021, Lille, France
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8351-6/21/07. . . $15.00
https://doi.org/10.1145/3449726.3463160

KEYWORDS
Algorithm Selection Problem, Knapsack Problem, Genetic
Algorithm, Parallelism

ACM Reference Format:
Alejandro Marrero, Eduardo Segredo, and Coromoto Leon. 2021.
A Parallel Genetic Algorithm to Speed Up the Resolution of the
Algorithm Selection Problem. In 2021 Genetic and Evolutionary
Computation Conference Companion (GECCO ’21 Companion), July
10–14, 2021, Lille, France. ACM, New York, NY, USA, 4 pages. https:
//doi.org/10.1145/3449726.3463160

1 INTRODUCTION
The Algorithm Selection Problem (ASP) was proposed by
Rice [7] in 1976 as a learning problem where the main goal
is to learn the relationship between features from a set of
instances of a particular optimisation problem and the per-
formance of several optimisation algorithms when solving
them. The overall performance on the set of instances can be
maximised if the instances are correctly mapped to the best-
performing algorithm considering the particular instance
features.
The main is to develop a Meta Evolutionary Algorithm

(MEA) for evolving or generating KNP instances, which are
tailored to different configurations of an Evolutionary Algo-
rithm (EA), particularly, a GA. Some of the most remarkable
works found are the following.

Pospichal et. al [6], proposed a parallel GA for solving the
KNP running entirely on a consumer-level of around $100
GPU. Besides, the authors defined several design criteria to
optimise the performance over the GPU. In fact, the authors
did not considered to include a repair operator in case the
solutions were out of the feasible region of the search space.
By contrast, the authors simply included a linear penalisa-
tion function whose value would be subtracted from the
current fitness of the solution. Moreover, this penalisation
value is associated with the situation where the capacity of
the KNP is surpassed. Regarding the GA configuration and
operators for solving the KNP instances, the authors set the

1978

https://doi.org/10.1145/3449726.3463160
https://doi.org/10.1145/3449726.3463160
https://doi.org/10.1145/3449726.3463160

GECCO ’21 Companion, July 10–14, 2021, Lille, France Alejandro Marrero, Eduardo Segredo, and Coromoto Leon

algorithm parameters as follows. First, the population size
was set to 256 individuals for the quality test and from 2 to
256 increasing in powers of two for the speedup test. The
number of items 𝑁 for the KNP instances was quite small,
considering only 𝑁 = 4, 20, 25, 40 elements. In terms of ge-
netic operators, the crossover operator was defined to the
Uniform All Crossover [1] and the mutation operator to the
Bit-Flip Mutation [1]. Besides, the selection operator was a
parallel approach of the Tournament selection where two in-
dividuals were randomly chosen from the population. Lastly,
the stopping criterion was 1,000 generations performed by
the GA. Considering the results obtained by this implemen-
tation, compared to a traditional CPU parallel approach with
GAlib,1 the GPU solutions were slightly worse in terms of
fitness than the CPU solutions for the same parameter. How-
ever, the average speedup of the GA GPU execution was
462 so the GPU could be utilised more time to improve the
quality of the results.

Contrary to the previous work, Sonuc et. al [8] proposed
a parallel approach for solving the KNP using a Simulated
Annealing (SA) algorithm running on a GPU. This approach
works as follows. First, the items introduced in the knapsack
are sorted in descending order by density. The density of
an item is calculated as the ratio between the profit and the
weight of the item: 𝑑𝑖 =

𝑝𝑖
𝑤𝑖
. It must be noticed that this

term it is commonly known as efficiency. After that, the
algorithm begins to introduce items in the knapsack until
the maximum capacity of the knapsack is reached. Then,
𝑚 SA algorithms are run in parallel using𝑚 different GPU
threads. Even though this proposal is considerably easier
to reproduce, the results cannot be extrapolated since the
largest number of items considered for a KNP instance was
set to 20.
In general, there are several approaches for solving the

KNP on a GPU, however, most implementations consider
the same type of genetic operators and parameters. Since we
are interested in generating tailored KNP instances with a
large variety of GA configurations, most of the GPU imple-
mentations are not suitable for this work. In other words,
the GPU implementations are considerably faster than the
parallel CPU approaches for solving the KNP. Nevertheless,
creating several GPU GA implementations requires signifi-
cantly more effort than producing the same configurations
to run on a CPU. As a result, only parallel CPU approaches
are considered herein.

2 PARALLEL GENETIC ALGORITHM
In spite of the large amount of EA techniques than can be
applied to the KNP [1, 2, 4], this work is focused on designing
a standard GA for solving the said problem. Specifically, the

1GAlib: http://lancet.mit.edu/ga/

main objective here is to find an highly configurable GA
implementation which is able to obtain high fitness values
as fast as possible. The fitness value here considered is the
objective function of the KNP, which is defined as follows:

𝑚𝑎𝑥

𝑁∑
𝑖=1

𝑣𝑖𝑥𝑖

𝑠𝑢𝑏 𝑗𝑒𝑐𝑡 𝑡𝑜

𝑁∑
𝑖=1

𝑤𝑖𝑥𝑖 ≤ 𝑄 𝑎𝑛𝑑 𝑥 ∈ {0, 1}

The number of elements that can be introduced in the knap-
sack is given by 𝑁 , 𝑣 and𝑤 are the profits and weights of the
elements, respectively, and Q is the maximum capacity of
the knapsack. Finally, the decision variables are represented
by 𝑥 .

The GA here presented (Algorithm 1) is similar to a stan-
dard GA [1]. However, the main difference lies on the re-
placement strategy performed at the end of each generation
of the approach, which has been designed having in mind
its parallelisation. The algorithm starts by creating an initial
population of random solutions. After that, and while the
stopping criterion is not met, the algorithm performs the
following steps. For each individual, two different individ-
uals are selected by using a Binary Tournament Selection
operator [1]. The selected individuals, known as parents,
will undergo the reproduction or mating phase, where new
offspring will be created. The reproduction phase consist
of applying the genetic operators of the standard GA, i.e.,
crossover and mutation. The particular genetic operators
chosen for this work are the Uniform Crossover (UC) and
the Uniform One Mutation (UOM) [1]. Afterwards, the new
offspring are evaluated using the KNP objective function. Fi-
nally, the replacement approach is based on a First Improve
version between each individual 𝑗𝑡ℎ in the population and
the 𝑗𝑡ℎ offspring. Algorithm 1 is easily parallelised since the
individuals of the population can be mapped to different
cores to be evaluated and replaced in parallel. Concretely, Al-
gorithm 1 performs the main loop, between lines 3 and 9, in
a parallel way. The parallelisation approach consists of divid-
ing the population of individuals among the total number of
cores available to perform the computation. Therefore, each
core only works on a portion of the population (𝑃𝑆/𝑛_𝑐𝑜𝑟𝑒𝑠).

3 EXPERIMENTAL ASSESSMENT
In order to evaluate the performance of the aforementioned
parallel GA, a two-phase experimental evaluation was con-
ducted. First of all, different configurations of the GA pro-
posed were evaluated by performing sequential runs for
solving a set of KNP instances with different features and a
variable number of items 𝑁 equal to 50, 100, 500 and 1,000.
The types of the KNP instances considered were some of

1979

http://lancet.mit.edu/ga/

A Parallel Genetic Algorithm to Speed Up the Resolution of the Algorithm Selection Problem GECCO ’21 Companion, July 10–14, 2021, Lille, France

Algorithm 1: Genetic Algorithm
Data: PS, N, V, W, Q
Result: Population of solutions for a KNP instance

1 population = initialisation(PS);
2 while not stopping criterion reached do
3 for 𝑗 ← 0 to 𝑃𝑆 do
4 firstParent = selection(population);
5 secondParent = selection(population);
6 offspring𝑗 = reproduction(firstParent,

secondParent);
7 evaluation(offspring𝑗);
8 population𝑗 = replacement(population𝑗 ,

offspring𝑗);
9 end

10 end

those proposed by Pisinger [5]. Concretely, in this work, the
Uncorrelated, Inverse Correlated, Strongly Correlated, Sub-
set Sum and Spanner Strongly Correlated instances were
considered. After that, in a second experiment, one of the
best-performing configurations, in terms of fitness, consid-
ering the biggest KNP instances was selected to assess its
scalability across multiple cores in several parallel runs.
Experiments were performed using a machine with two

AMDOpteron processors (model 6164) with 48 cores running
a Debian distribution (Buster). In addition, the problem and
all the GA implementations were written in C++.

3.1 First experiment: parameter setting
analysis

The first experiment was aimed to analyse the best GA con-
figuration for each type of the KNP instances considered.
At this point, it is worth mentioning that the GA was run
sequentially. For this purpose, 16 different configurations
were designed by varying the values of different parameters.
The population size was set to 40, 80, 120 and 160 individuals.
At the same time, the mutation rate (𝑚𝑟) was set consider-
ing the size of the KNP instance to solve. Therefore, it was
defined as 1/𝑁 , were 𝑁 is the number of items or size of the
KNP instance. The crossover rate (𝑐𝑟) was set to values 0.7,
0.8, 0.9 and 1.0. Last but not least, the stopping criterion was
set to 3 · 105 evaluations and each execution was repeated
30 times, since we are dealing with stochastic approaches.

Following the evaluation procedure performed in [3], the
fitness was the metric selected to compare the different GA
configurations. So as to give the conclusions with enough
statistical confidence, Shapiro-Wilk, Levene, ANOVA or Welch
statistical tests were considered for results that follow a nor-
mal distribution, while the Kruskal-Wallis test was applied

otherwise. Configuration A statistically outperforms config-
uration B if the p-value obtained after performing a pairwise
comparison of both approaches by following the statistical
procedure described before is lower than the significance
level 𝛼 = 0.05 and, if at the same time, configuration A pro-
vides, at the end of the runs, a higher mean and median of
the fitness than configuration B.

Observing the results2, we note that, considering a particu-
lar type of instance, statistically significant differences arose
among different configurations of the GA. The above means
that the parameterisation of the GA has a direct impact over
its performance.

Furthermore, changing the size of the instances could mod-
ify the behaviour of the different GA configurations. The
above means that, depending on the particular features of
an instance, the best-performing GA configuration changes.
The fact that different GA configurations are much more
suitable for different types of KNP instances demonstrates
the importance of properly solving the ASP in this partic-
ular context. Given a KNP instance with a particular set of
features, we are interested in providing a suitable GA config-
uration that attains high quality solutions for the mentioned
instance.
Finally, by the application of the future MEA, we could

generate KNP instances that intentionally fits to a given GA
configuration, i.e., that can be solved properly by the target
GA configuration we are interested in. The above would
allow large data sets of KNP instances to be obtained, for
whichwewould know the best-performing GA configuration
for each of them.

3.2 Second experiment: scalability analysis
Themain goal of the second experimentwas to studywhether
the parallel GA is able to scale properly, i.e., if it is able to
provide results in a shorter amount of time when the num-
ber of computational resources to run it is increased. The
reader should recall that this parallel GA will be used as a
component of the future MEA that will generate tailored
KNP instances. Since the above task will consume a huge
quantity of computational results, it is very important that
the parallel GA scales properly, thus speeding up the whole
procedure.

Although previous results showed that there is not a silver
bullet configuration that obtains the best results in every
scenario, for the sake of saving computational time, the scal-
ability study was performed with only one of the 16 GA
configurations defined in the first experiment. For the above

2Due to the length restrictions of this paper, the whole set of tables, results,
source code and additional related information is available in a Github
repository https://github.com/PAL-ULL/GECCO-21-Parallel-GA-KNP

1980

https://github.com/PAL-ULL/GECCO-21-Parallel-GA-KNP

GECCO ’21 Companion, July 10–14, 2021, Lille, France Alejandro Marrero, Eduardo Segredo, and Coromoto Leon

reason, that GA configuration obtaining, the largest num-
ber of times, the first position in the ranking was selected
for the current experiment. Particularly, the said configu-
ration applied 160 individuals and a crossover rate 𝑐𝑟 = 1.
Furthermore, only instances of size N = 1,000 items, i.e., the
biggest ones, were taken into consideration. In an effort to
efficiently distribute the workload, the different number of
cores were selected to be divisors of the number of individu-
als in the population. As a result, considering a population
size of 160 individuals, the number of cores contemplated in
the scalability analysis were 2, 4, 5, 8, 10, 16, 20, 32 and 40.
Figure 1 shows the speed up results obtained during the

scalability study for a Spanner Strongly Correlated instance
of N = 1,000 items. Although Figure 1 shows that the speed
up is not completely linear, results demonstrate that the par-
allel GA can scale efficiently when increasing the number of
cores. For instance, the average elapsed time for solving this
particular KNP instance sequentially, considering 30 repe-
titions, was equal to 14.1661 seconds, while considering 40
cores, the average elapsed time decreased to 0.8525 seconds,
thus resulting in a speed up factor over 16.

4 CONCLUSIONS AND FUTURE LINES OF
WORK

The main objective of this work is to propose a parallel GA
for solving KNP instances which is highly configurable and
can scale efficiently over several cores. The results obtained
in the experimental assessment support the hypothesis that
there is not a silver bullet GA configuration for solving all
types of KNP instances, thus demonstrating the importance
of properly addressing the ASP in this particular context.
The generation of tailored KNP instances for a particular
GA configuration involves a huge amount of computational

Figure 1: Speed up values considering the Spanner
Strongly Correlated KNP instance of N = 1,000 items

resources and, as a result, to speed up the whole procedure
is mandatory. The scalability analysis performed over the
parallel GA proposed herein demonstrates that it is able to
properly accelerate the resolution of different types of KNP
instances.

Bearing the above in mind, one of the main lines of future
work will involve the development of anMEA that makes use
of the parallel GA here proposed herein in order to decrease
the time required to generate tailored KNP instances. Once
we get sufficiently large data sets of KNP instances that fit
with different GA configurations, we will be able to train ML
models that allow the resolution of the ASP, in this particular
context, to be carried out in an easier manner.

ACKNOWLEDGEMENT
This work was partially funded by the Spanish Ministry of
Science, Innovation and Universities, as well as by the Univer-
sity of La Laguna, as part of the programme “Nuevos Proyec-
tos de Investigación: Iniciación a la Actividad Investigadora”
[contract number 1203_2020]. The work of Alejandro Mar-
rero was funded by the Canary Islands Government “Agencia
Canaria de Investigación Innovación y Sociedad de la Infor-
mación - ACIISI” [contract number TESIS2020010005].

REFERENCES
[1] Agoston E. Eiben and James E. Smith. 2003. Introduction to Evolutionary

Computing. Springer, Berlin Heidelberg. 299 pages. https://doi.org/10.
1162/evco.2004.12.2.269 arXiv:9809069v1 [arXiv:gr-qc]

[2] Kangshun Li, Yuzhen Jia, Wensheng Zhang, and Yang Xie. 2008. A
new method for solving 0/1 knapsack problem based on evolutionary
algorithm with schema replaced. In 2008 IEEE International Conference
on Automation and Logistics. IEEE, Qingdao, China, 2569–2571.

[3] Alejandro Marrero, Eduardo Segredo, Coromoto León, and Carlos Se-
gura. 2020. A Memetic Decomposition-Based Multi-Objective Evolu-
tionary Algorithm Applied to a Constrained Menu Planning Problem.
Mathematics 8, 11 (2020). https://doi.org/10.3390/math8111960

[4] Phuong Hoai Nguyen, Dong Wang, and Tung Khac Truong. 2016. A
new hybrid particle swarm optimization and greedy for 0-1 knapsack
problem. Indonesian Journal of Electrical Engineering and Computer
Science 1, 3 (2016), 411–418. https://doi.org/10.11591/ijeecs.v1.i3.pp411-
418

[5] David Pisinger. 2005. Where are the hard knapsack problems? Comput-
ers & Operations Research 32, 9 (2005), 2271–2284. https://doi.org/10.
1016/j.cor.2004.03.002

[6] Petr Pospichal, Josef Schwarz, and Jiri Jaros. 2010. Parallel Genetic
Algorithm Solving 0/1 Knapsack Problem Running on the GPU.

[7] John R. Rice. 1976. The Algorithm Selection Problem. Advances in
Computers 15, C (1976), 65–118. https://doi.org/10.1016/S0065-2458(08)
60520-3

[8] Emrullah Sonuç, Baha Sen, Emrullah Sonuc, Baha Sen, and Safak Bayir.
2016. A parallel approach for solving 0/1 knapsack problem using
simulated annealing algorithm on CUDA platform Keratoconus Disease
and Three-Dimensional Simulation of the Cornea Throughout The
Process Of Cross-Linking Treatment View project A Parallel Approach.

1981

https://doi.org/10.1162/evco.2004.12.2.269
https://doi.org/10.1162/evco.2004.12.2.269
https://arxiv.org/abs/9809069v1
https://doi.org/10.3390/math8111960
https://doi.org/10.11591/ijeecs.v1.i3.pp411-418
https://doi.org/10.11591/ijeecs.v1.i3.pp411-418
https://doi.org/10.1016/j.cor.2004.03.002
https://doi.org/10.1016/j.cor.2004.03.002
https://doi.org/10.1016/S0065-2458(08)60520-3
https://doi.org/10.1016/S0065-2458(08)60520-3

	Abstract
	1 Introduction
	2 Parallel Genetic Algorithm
	3 Experimental assessment
	3.1 First experiment: parameter setting analysis
	3.2 Second experiment: scalability analysis

	4 Conclusions and future lines of work
	References

