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ABSTRACT
The performance of an evolutionary algorithm on a particular opti-
mization problem highly depends on the choice of the algorithm’s
parameters. Fitness landscape analysis can help learn important
characteristics of the optimization problem that may influence the
optimal parameter values. Using this knowledge for parameter
choice can be an important step in designing fitness-aware algo-
rithms.

In this paper, we present an approach to automatic parame-
ter choice that uses exploratory landscape analysis and machine
learning. Using a neural network trained on a dataset of optimal
parameter choices for particular landscape features of the W-model
problemwe choose parameters for the (1+(𝜆, 𝜆)) genetic algorithm.
The experimental results suggest that the neural network is capa-
ble of providing good parameter choices based on the landscape
features computed by the flacco package.
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1 INTRODUCTION
The development of methods for choosing parameters in evolu-
tionary algorithms is essential for their successful application in
practice [11]. There exist several different approaches to this prob-
lem, which are commonly referred to as parameter tuning and
parameter control.

Parameter tuning usually involves automated techniques, such
as irace [12] or SMAC [6]. These methods are usually based on the
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evaluation of various parameter combinations on the given problem
instance in order to find the best set of parameters. Unfortunately,
this may not be possible in a budged-constrained environment,
where no time for such training is given.

In parameter control, on the other hand, the parameters are cho-
sen during the optimization process without preliminary training.
Thus, this approach can be used more broadly, while also making it
possible to change parameters over time as the optimum parameter
choice can be quite different for various optimization stages [5, 8].

Fitness landscape analysis [14] is actively studied as a tool that
can help extract knowledge from the problem instances, making
it possible to tailor the used metaheuristics to the considered op-
timization problem. Exploratory landscape analysis [13] considers
fitness landscape features that can be extracted from intermediate
solutions and their fitness values, making it possible to gain some
understanding of the problem even in the black-box environment.

Exploratory landscape analysis has found various successful
applications [15]. One of the promising research directions is auto-
mated algorithm selection with exploratory landscape analysis and
machine learning [10] and even dynamic algorithm selection [7].
Unfortunately, these works mostly focus on continuous optimiza-
tion problems and there is still much potential for applying similar
ideas in the discrete domain.

In this paper, we present our first steps in developing an ap-
proach to automated parameter choice by using fitness landscape
analysis together with neural networks. In the proposed approach
we evaluate the fitness landscape features of the problem instance
and suggest the optimal parameter values by using the neural net-
work trained on a dataset of landscape features and corresponding
optimal parameter choices. Compared to automated algorithm se-
lection approaches, we consider the problem of regression of the
algorithm’s parameters instead of classification of the problem by
the best suitable algorithm.

For this study, we collected a dataset of optimal parameter val-
ues for the (1 + (𝜆, 𝜆)) genetic algorithm (GA) [3] with four static
parameters on multiple instances of the W-model benchmark prob-
lem [17]. We computed the landscape features for the same problem
instances using the flacco package in R [9]. Using the neural net-
work trained on this dataset we are able to recommend parameter
values for the (1 + (𝜆, 𝜆)) GA for different optimization problem
instances as long as we can compute their fitness landscape features.

The experimental results on various instances of the W-model
problem suggest that the proposed landscape-aware approach to
parameter choice can help determine good values for static param-
eters of the (1 + (𝜆, 𝜆)) genetic algorithm, as the algorithm with
suggested parameter values outranks other considered variations
of the (1 + (𝜆, 𝜆)) GA.
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Algorithm 1 The (1 + (𝜆, 𝜆)) GA with parameters 𝜆1, 𝜆2, 𝑘, 𝑐
1: 𝑛 ← problem size
2: 𝜆1 ← mutation phase population size
3: 𝜆2 ← crossover phase population size
4: 𝑘 ← mutation coefficient
5: 𝑐 ← crossover probability
6: Initialize: 𝑥 ← uniformly from {0, 1}𝑛
7: for 𝑡 ← 1, 2, 3, . . . do
8: ℓ ∼ B(𝑛, 𝑘/𝑛)
9: for 𝑖 ∈ 1, 2, . . . , 𝜆1 do ⊲ Phase 1: Mutation
10: 𝑥 (𝑖) ← flip ℓ uniformly chosen bits in 𝑥

11: end for
12: 𝑥 ′ ← uniformly from {𝑥 ( 𝑗) | 𝑓 (𝑥 ( 𝑗) ) = max{𝑓 (𝑥 (𝑖) )}}
13: for 𝑖 ∈ 1, 2, . . . , 𝜆2 do ⊲ Phase 2: Crossover
14: for 𝑗 ∈ 1, 2, . . . , 𝑛 do
15: 𝑦

(𝑖)
𝑗
← 𝑥 ′

𝑗
with probability 𝑐 , otherwise 𝑥 𝑗

16: end for
17: end for
18: 𝑦 ← uniformly from {𝑦 ( 𝑗) | 𝑓 (𝑦 ( 𝑗) ) = max{𝑓 (𝑦 (𝑖) )}}
19: if 𝑓 (𝑦) ≥ 𝑓 (𝑥) then ⊲ Selection
20: 𝑥 ← 𝑦

21: end if
22: end for

2 PRELIMINARIES
2.1 (1 + (𝜆, 𝜆)) Genetic Algorithm
The (1 + (𝜆, 𝜆)) genetic algorithm [3] is a two-phase genetic algo-
rithm. The algorithm tries to explore the search space by using high
mutation rates in the first phase. In the second phase, it applies
a crossover mechanism to counteract possible negative effects of
high mutation rates on individuals. In this work, we primarily con-
sider the (1 + (𝜆, 𝜆)) GA with four parameters {𝜆1, 𝜆2, 𝑘, 𝑐}, similar
to the one studied in [2]. The algorithm’s pseudocode is listed in
Algorithm 1 and it works as follows:
• during the first phase of each iteration, the algorithm creates
𝜆1 mutant individuals by applying the mutation operator
with mutation rate 𝑘/𝑛;
• the best mutant individual is selected to crossover with the
parent individual;
• in the second phase, 𝜆2 individuals are created with the
crossover operator that takes bits from the mutant individual
with probability 𝑐;
• the best crossover individual replaces the parent if it is at
least as good;
• the process repeats until the optimum is found.

For experiments, we use the generic implementation of the (1 +
(𝜆, 𝜆)) genetic algorithm that was first presented in [1].

2.2 W-Model problem
The W-model problem [17] is a configurable benchmark optimiza-
tion problem. W-model introduces several tunable layers that affect
the fitness landscape of the problem and thus make it suitable for
various benchmarking tasks. The tunable layers of the W-model
problem are:
• neutrality, which introduces areas with equal fitness values;

• epistasis, which introduces dependency between different
individual genes;
• ruggedness, which introduces so-called mountains and val-
leys into the fitness landscape;
• dummy, which introduces variables that do not affect the
fitness value of the individual.

In this work, we use the C++ implementation of the W-model
problem over the OneMax problem on binary strings from the
IOHProfiler [4].

2.3 Landscape Analysis
Flacco [9] is a popular R-package for feature-based landscape anal-
ysis. It provides various tools for evaluation, analysis and visualiza-
tion of fitness landscape features.

We use the following feature sets in this study:
• Level-Set: A set of features computed by training classifiers
on provided samples of candidate solutions: LDA (Linear
Discriminant Analysis), QDA (Quadratic Discriminant Anal-
ysis) and MDA (Mixture Discriminant Analysis). Classifiers
predict whether or not fitness value falls below the threshold.
Statistics of cross-validation mean misclassification errors
for each classifier represent the resulting features.
• Meta-Model: A set of features computed by creating linear
and quadratic models to approximate the objective function
from samples of candidate solutions. Values such as adjusted
𝑅2 of linear and quadratic models, smallest and biggest abso-
lute coefficients of the models and their ratio represent this
feature set. These features are designed to approximate the
problem structure and complexity with analytical functions
and aim to identify the relationship between variables.
• Y-distribution: A set of features computed as the number of
peaks, skewness and kurtosis of kernel-based estimation of
the density of samples of candidate solutions. Provides an
overview of the shape and deeper insight into the landscape
and allows to identify areas of high neutrality, ruggedness
and points at the presence of plateaus in the search space.

3 EXPERIMENTS
3.1 Performance Dataset
In order to train the neural network, we collected the dataset of
average runtimes of the parametrized (1 + (𝜆, 𝜆)) GA presented in
Section 2.1 with different parameter values on different instances
of the W-Model problem.

For the (1 + (𝜆, 𝜆)) GA we consider the following parameters:
• 𝜆1 ∈ [2, 3, 4, ..., 9];
• 𝜆2 ∈ [2, 3, 4, ..., 9];
• 𝑘 ∈ [1, 3, 5, 7, 9];
• 𝑐 ∈ [0.01, 0.03, 0.05, 0.07, 0.09].

We computed the average runtime of (1 + (𝜆, 𝜆)) GA with all
possible combinations of these parameters on the instances of W-
Model problem with the following parameters:
• 𝑛 ∈ [8, 16, 32, 64, 128];
• dummy ∈ [1, 1 − 1/𝑛, 1 − 2/𝑛, ..., 0.8];
• neutrality ∈ [0, 1, 2, ..., 𝑛 × 0.2];
• epistasis ∈ [0, 1, 2, 3].

1983



Automated Parameter Choice GECCO ’21 Companion, July 10–14,2021, Lille, France

These values were chosen in order to evaluate problem instances
with different landscape features within a reasonable amount of
time. In particular, using higher values of epistasis lead to a sig-
nificant decrease in the performance of some algorithms chosen
for comparison. We did not use the ruggedness layer as it does not
exactly correlate with the complexity change in the problem.

To sum up, for each combination of (1 + (𝜆, 𝜆)) GA parameters
{𝜆1, 𝜆2, 𝑘, 𝑐} and W-model problem parameters {𝑛, dummy, neutral-
ity, epistasis} we run the (1 + (𝜆, 𝜆)) genetic algorithm 10 times.
We choose the set of parameters with the lowest mean runtime as
the best set of parameters for the particular problem instance.

3.2 Feature Extraction
In practice, we usually do not know the parameters of the optimized
problem, thuswe apply the fitness landscape analysis to obtain some
insight into the particular problem instance. We computed 10 sepa-
rate vectors of 35 features with flacco for each W-model problem
instance from the performance dataset. This helps us increase the
amount of data we can use for the training of the neural network
while also taking into the consideration randomness of computed
features. Each feature vector is calculated from 100 random indi-
viduals which should be taken into account when considering the
budget of the algorithm. For now, we do not use the evaluated
individuals in the algorithm, although it may be useful to initialize
the optimization process from the best individual observed during
the evaluation of features.

Combining the featureswith performance data results in a dataset
of best (1 + (𝜆, 𝜆)) GA parameters for certain fitness landscape fea-
tures: features⇒ {𝜆1, 𝜆2, 𝑘, 𝑐}. We can then use this data to train
the neural network that can suggest certain parameter values for a
given set of landscape features.

3.3 Neural Network
We have trained FNN (Feedforward Neural Network) with two
hidden layers: 32 and 16 nodes respectively. We chose Adam op-
timization algorithm as the solver for weight optimization which
proved to be the best among SGD (Stochastic Gradient Descent)
and Limited-memory BFGS (Broyden-Fletcher-Goldfarb-Shanno
algorithm). We used ReLU (Rectified Linear Unit) as an activation
function with the regularization parameter set to 10−4 while the
learning rate was set to constant with the initial value of 10−3. 20%
of training data was set aside for validation. The training process
was terminated when the validation score did not improve by at
least 10−4 for 10 consecutive epochs.

3.4 Parameter Recommendation
In order to test the proposed approach to parameter selection we
evaluated the performance of the (1+ (𝜆, 𝜆)) genetic algorithm with
suggested parameter values on different instances of the W-model
problem.

We compare the performance of the algorithm with param-
eters recommended by the neural network, which we call the
(1 + (𝜆, 𝜆)) GA tuned, with following (1 + (𝜆, 𝜆)) GA variations
available in the generic (1 + (𝜆, 𝜆)) GA repository:
• (1 + (𝜆, 𝜆)), 𝜆 = 4: the (1 + (𝜆, 𝜆)) GA with default static
parameter choices 𝜆2 = 𝜆1, 𝑘 = 𝜆1, 𝑐 = 1/𝜆1 for 𝜆1 = 4;

Table 1: Comparison of algorithms’ performance 𝑛 = 256
Algorithm Mean rank Rank SD Mean diff
(1+1) EA 1.75 1.26 -68.17
RLS 3.02 1.25 -25.45
(1 + (𝜆, 𝜆)), tuned 3.45 1.46 0
(1 + (𝜆, 𝜆)), single best 3.81 1.89 84.33
(1 + (𝜆, 𝜆)), 𝜆 ∼ 𝑝𝑜𝑤 (2.5) 3.99 1.39 59.44
(1 + (𝜆, 𝜆)), 𝜆 = 4 6.43 1.15 306.69
(1 + (𝜆, 𝜆)), 𝜆 ≤ 𝑛 6.66 1.44 1949.24
(1 + (𝜆, 𝜆)), 𝜆 ≤ 2𝑙𝑛𝑛 6.86 1.36 467.93

Table 2: Comparison of algorithms’ performance 𝑛 = 512
Algorithm Mean rank Rank SD Mean diff
RLS 2.73 1.83 -184.48
(1 + (𝜆, 𝜆)), tuned 3.13 1.76 0
(1 + (𝜆, 𝜆)), 𝜆 ≤ 𝑛 3.4 1.91 204.54
(1 + (𝜆, 𝜆)), 𝜆 ≤ 2 ln𝑛 3.86 1.18 207.22
(1 + (𝜆, 𝜆)), 𝜆 = 4 4.73 0.70 399.1
(1+1) EA 5.33 2.94 886.95
(1 + (𝜆, 𝜆)), 𝜆 ∼ 𝑝𝑜𝑤 (2.5) 6.13 0.35 706.25
(1 + (𝜆, 𝜆)), single best 7.66 0.48 1272.10

• (1 + (𝜆, 𝜆)), 𝜆 ≤ 2 ln𝑛 and (1 + (𝜆, 𝜆)), 𝜆 ≤ 𝑛: the (1 + (𝜆, 𝜆))
genetic algorithm with dynamic 𝜆 tuned according to the
1/5-th rule with the listed upper bound on 𝜆;
• (1 + (𝜆, 𝜆)), 𝜆 ∼ 𝑝𝑜𝑤 (2.5): the (1 + (𝜆, 𝜆)) genetic algorithm
with 𝜆 sampled at each iteration from the power-law distri-
bution with 𝛽 = 2.5.

We also consider the set of parameters in the training data set,
which shows the best overall performance among all parameter
choices. The parameter values are 𝜆1 = 2, 𝜆2 = 2, 𝑘 = 8, 𝑐 = 0.02, and
we denote the (1 + (𝜆, 𝜆)) GA with such parameters as (1 + (𝜆, 𝜆)),
single best. Additionally, we evaluated the (1+1) evolutionary al-
gorithm and random local search (RLS) as baseline for algorithm
comparison and to further study the behavior of all considered
algorithms on the W-model problem.

For the experimental evaluation, we used the W-model problem
instances with size 𝑛 = 256 and 𝑛 = 512. It is important to note
that the neural network was trained only on data for 𝑛 ≤ 128.
The dummy, neutrality and epistasis parameters were chosen from
similar ranges as in the performance dataset. We computed 5 sepa-
rate sets of landscape features for each problem instance. For each
set of features, we computed the suggested parameters for the
(1 + (𝜆, 𝜆)) GA using the trained neural network. Finally, we evalu-
ated the performance of all algorithms on these problem instances.

The resulting performance metrics are shown in Table 1 for
𝑛 = 256 and Table 2 for 𝑛 = 512. For each algorithm, we show
its mean rank among all the considered algorithms, the standard
deviation of the algorithm’s rank and the mean difference of the
algorithm’s runtime in terms of fitness evaluations compared to the
tuned (1 + (𝜆, 𝜆)) GA. Negative difference values indicate that the
specific algorithm performs better than our method and positive
difference shows the opposite.

Looking into the results we can see that on average the tuned
(1 + (𝜆, 𝜆)) GA is the best-ranked algorithm out of all considered
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variations of the (1 + (𝜆, 𝜆)) GA. In most cases, the performance dif-
ference is greater than 100 evaluations required for the evaluation
of fitness landscape features. The fitness-aware parameter choice
performs better than the (1+ (𝜆, 𝜆)), 𝜆 = 4with coupled parameters.
The tuned (1 + (𝜆, 𝜆)) GA also outperforms the (1 + (𝜆, 𝜆)) GA vari-
ants with dynamic 𝜆. The dynamic versions of the (1 + (𝜆, 𝜆)) GA
improve their performance with the increased problem size, which
may mean that they either need time to find the good parameter
values or benefit greatly from changing 𝜆 in the different stages of
optimization.

The most promising observation is the stark difference of the per-
formance of the tuned (1 + (𝜆, 𝜆)) GAand single best (1 + (𝜆, 𝜆)) GA.
For 𝑛 = 256 they show similar performance in terms of ranking
which may suggest that the neural network just chooses the best
set of parameters in the training data. This is proven wrong for
𝑛 = 512, where the single best algorithm shows the worst perfor-
mance out of all, while the tuned (1 + (𝜆, 𝜆)) GA still shows great
performance. This observation makes us believe that the neural
network is capable of learning parameter choices dependent on the
landscape features.

Additionally, we examined results for specific W-model parame-
ter ranges in order to better understand the advantages and disad-
vantages of the trained model and our proposed method. By split-
ting parameter ranges into intervals, we compared average ranks
of different algorithms on the corresponding W-model instances
and average differences in the number of function evaluations.

After splitting neutrality and dummy parameter ranges into
intervals of 5, we observe that our approach achieves the best
results on instances with low or moderate neutrality (≤ 40) with an
average rank of about 2.5. Single best (1 + (𝜆, 𝜆)) GA and power-law
(1 + (𝜆, 𝜆)) GA slightly catch up on intervals with high neutrality
(≥ 50) with an average rank of 3.8 and 3.7 respectively, while our
solution has the rank of 3.5. Dummy W-model parameter intervals
show the opposite results with our solution peaking on moderate
or high dummy values (≥ 30) with an average rank of 2.5 while
single best and power-law (1 + (𝜆, 𝜆)) GA show best results on
low dummy instances (≤ 20) with average ranks of 3.8 and 3.9
respectively, while our solution has an average rank of 3.4.

4 CONCLUSION AND FUTUREWORK
Successful application of exploratory landscape analysis and ma-
chine learning techniques in the continuous optimization domain
motivates similar research in the discrete domain. With this work,
we make the first step towards automated parameter choice us-
ing the fitness landscape analysis and neural networks for discrete
optimization problems.

In this study, we collected a dataset of optimum parameter
choices for the (1 + (𝜆, 𝜆)) GA on multiple instances of the W-
model benchmark problem. Using a neural network trained on
this dataset we choose four parameters in the (1 + (𝜆, 𝜆)) algo-
rithm tailored to the considered optimization problem instance.
The experimental results show that the proposed landscape-aware
approach to the parameter choice can help determine good values
for static parameters of the (1 + (𝜆, 𝜆)) genetic algorithm.

For future work, it is important to further evaluate the proposed
approach on different optimization problems, as well as other algo-
rithms. Examining problems with features not represented in the

W-model can help improve the training data, while successfully
applying the proposed approach to other problems with similar
characteristics would further show the robustness of our method.

Finally, our primary goal is the development of a dynamic pa-
rameter tuning approach that would use the individuals evaluated
by the optimization algorithm for the computation of landscape
features on the fly. It is important to consider how the use of such in-
dividuals may affect the performance of our approach, as landscape
features were shown to be sensitive to the sampling strategy [16].
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