
The Lower Bounds on the Runtime of the (1 + (𝜆, 𝜆)) GA on the
Minimum Spanning Tree Problem

Matvey Shnytkin

ITMO University

St. Petersburg, Russia

Denis Antipov

ITMO University

St. Petersburg, Russia

ABSTRACT
Plenty of inspiring runtime analysis results have been recently

obtained for the (1 + (𝜆, 𝜆)) genetic algorithm (GA) on different

benchmark functions. These results showed the efficiency of this

GA, but we still do not have much understanding of its behavior

on the real-world problems. To shed some light on this problem,

we analyze the (1 + (𝜆, 𝜆)) GA on the minimum spanning tree

problem. We prove a lower bound of Ω(𝑚2/𝜆) fitness evaluations
on its runtime, which shows that the considered GA with constant

values of parameter 𝜆 does not significantly outperform the simple

(1 + 1) EA on this problem.

CCS CONCEPTS
• Theory of computation → Theory of randomized search
heuristics; Random search heuristics;

KEYWORDS
Runtime Analysis, Minimum Spanning Tree, Crossover, Theory

ACM Reference Format:
Matvey Shnytkin and Denis Antipov. 2021. The Lower Bounds on the Run-

time of the (1 + (𝜆, 𝜆)) GA on the Minimum Spanning Tree Problem. In

2021 Genetic and Evolutionary Computation Conference Companion (GECCO
’21 Companion), July 10–14, 2021, Lille, France. ACM, New York, NY, USA,

4 pages. https://doi.org/10.1145/3449726.3463220

1 INTRODUCTION
In the field of evolutionary computation the theoretical commu-

nity has made a decent contribution into the understanding of the

working principles of the evolutionary algorithms (EAs). Surpris-

ingly, even the runtime analysis of simple algorithms on simple

benchmark problems turned out to be fruitful for helpful recom-

mendations on how to use EAs in practice. Sometimes, the theo-

retical analysis of simple instances even resulted into developing

new effective algorithms, such as the (1 + (𝜆, 𝜆)) genetic algorithm
(GA) [7].

The (1 + (𝜆, 𝜆)) GA is a crossover-based algorithm which unlike

most GAs uses crossover after the mutation. The main idea of this

algorithm is to first use an aggressive mutation which is likely to

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

GECCO ’21, July 10–14, 2021, Lille, France
© 2021 Copyright held by the owner/author(s). Publication rights licensed to the

Association for Computing Machinery.

ACM ISBN 978-1-4503-8351-6/21/07. . . $15.00

https://doi.org/10.1145/3449726.3463220

find some beneficial changes in the current individual and then

use a crossover as a repairing mechanism which reverts all the

harmful changes produced by the strong mutation. This unusual

mechanism was inspired by the study of the black-box complexity

of theOneMax problem and from the observation that the standard

algorithms do not benefit from inferior (in terms of fitness) solutions

when solving this problem.

The theoretical analysis has showed that the (1 + (𝜆, 𝜆)) GA has

a good performance onmultiple classes of benchmark functions. For

OneMax it was shown in [6] that with population size 𝜆 slightly less

than Θ(
√︁
log(𝑛)) and with proper parameters for the mutation and

crossover operators the runtime is slightly less than 𝑂 (𝑛
√︁
log(𝑛)),

which is better than the runtime of any mutation-based algorithm

on the same problem. It was also shown in [6] and [1] that the

dynamic choice of 𝜆 leads to the Θ(𝑛) runtime, which is the asymp-

totically best known runtime for the crossover-based algorithms

on OneMax. For the LeadingOnes problem it was shown in [2]

that the (1 + (𝜆, 𝜆)) GA does not perform better than the simple

(1 + 1) EA, but at the same time it does not perform worse (in an

asymptotical sense). The analysis of the (1 + (𝜆, 𝜆)) GA on the non-

unimodal class of Jump functions in [3] has showed that the proper

choice of parameters (different from the recommendations given

in [7]) can yield a runtime which is approximately the square root

of the runtime of the best mutation-based algorithm on the same

problem and it is also much better than the runtime of the classic

GAs.

While all mentioned results were obtained for different classes

of benchmark functions, there are only few results exist which

consider the (1 + (𝜆, 𝜆)) GA on the more practical problems. In

one such work [5] it was shown that the algorithm works well

on the MAX3-SAT problem, where the goal is to maximize the

number of satisfied clauses in a 3-CNF boolean formula. Namely,

it was shown that for the formulas with a small density of clauses

the behavior of the (1 + (𝜆, 𝜆)) GA is very similar to the one on

OneMax. Several empirical studies also support the effectiveness

of the (1 + (𝜆, 𝜆)) GA on the RoyalRoad functions [7], on a broader

class of MAX3-SAT instances [13] and on some combinatorial opti-

mization problems [14].

At the same time there are plenty of results for the (1 + 1) EA
considering its runtime on different real-world problems [8, 10–

12, 15–20]. The reason why the same theoretically proven results

are still not obtained for the (1 + (𝜆, 𝜆)) GA is that the core mecha-

nism of the (1 + (𝜆, 𝜆)) GA relies on the strong correlation between

fitness and the distance to the optimum, which is necessary for the

detection of the beneficial changes after an aggressive mutation via

the fitness of the mutated individuals.

Our results. In this paper we aim at doing the first steps to-

wards understanding of how the (1 + (𝜆, 𝜆)) GA performs on the

1986

https://doi.org/10.1145/3449726.3463220
https://doi.org/10.1145/3449726.3463220

GECCO ’21, July 10–14, 2021, Lille, France D. Antipov and M. Shnytkin

real-world problems on graphs and if its mechanisms can help to

outperform the classic algorithms. For this we analyse this GA

on the minimum spanning tree problem (MST). We prove that

the runtime of the (1 + (𝜆, 𝜆)) GA on all MST instances with a

unique solution is at least Ω(𝑚2

𝜆
) fitness evaluations. This shows

that for constant 𝜆 we cannot benefit more than a log(𝑚𝜔max) fac-
tor compared to the hill-climbing (1 + 1) EA, which has a runtime

of 𝑂 (𝑚2
log(𝑛𝜔max)) [16]. For the greater values of 𝜆 our lower

bound is more optimistic, however, we conjecture that the actual

lower bound is even higher in this case.

2 PRELIMINARIES
In this section we formally describe the analysed (1 + (𝜆, 𝜆)) GA,
the MST problem and the fitness function we use.

2.1 The (1 + (𝜆, 𝜆)) GA
The (1 + (𝜆, 𝜆)) GA is a crossover-based algorithm which was

specifically developed for the pseudo-Boolean optimization (how-

ever, recently a modification for the problems on permutations was

proposed in [4]). The algorithm has three parameters, which are

the mutation rate 𝑝 ∈ [0, 1], the crossover bias 𝑐 ∈ [0, 1] and the

population size 𝜆 ∈ N. The (1 + (𝜆, 𝜆)) GA stores one individual 𝑥 ,

which is initialized with a random bit string of length 𝑛, where 𝑛

is the problem size. Then it performs iterations, which consist of a

mutation phase and a crossover phase. In the mutation phase the

algorithm first chooses ℓ ∼ Bin(𝑛, 𝑝), which is called the mutation
strength. Then it creates 𝜆 offspring, each by flipping exactly ℓ bits

in 𝑥 chosen uniformly at random. Then it chooses the mutation
winner 𝑥 ′ as the offspring with the best fitness value. If there are

several challengers, the winner is chosen from them uniformly at

random. The main idea of such mutation is to perform a standard

bit mutation 𝜆 times, but conditional on that all offspring must have

the same distance from 𝑥 . This is supposed to help to detect the

beneficial bit flips via fitness and to choose an offspring with such

flips as the mutation winner.

In the crossover phase we again create 𝜆 offspring, but this time

we apply a crossover to the current individual 𝑥 and the mutation

winner 𝑥 ′. The crossover operator takes each bit from 𝑥 ′ with prob-

ability 𝑐 and from 𝑥 with probability 1 − 𝑐 . This mechanism is sup-

posed to create an offspring which preserves the beneficial mutation

made in 𝑥 ′ while it repairs all destructive mutations by taking the

corresponding bits from 𝑥 . The pseudocode of the (1 + (𝜆, 𝜆)) GA
is shown in Algorithm 1.

The recommendations for the relation between the three pa-

rameters of the algorithm were given in [7]. They suggest to set

𝑝 = 𝜆
𝑛 and 𝑐 = 1

𝜆
. This choice was shown to be optimal for the

OneMax problem, but it also worked well on other problems such

as LeadingOnes [2] and MAX-3SAT [5]. For this reason we rely

on this recommendation in this paper.

2.2 The Minimum Spanning Tree Problem
In the MST problem we are given an undirected connected graph

𝐺 = (𝑉 , 𝐸) and a weight function 𝜔 : 𝐸 → R+ and our aim is

to find a connected subgraph 𝐺 ′ = (𝑉 , 𝐸 ′), where 𝐸 ′ ⊂ 𝐸 has

the minimum weight. That is, we want to minimize the function

𝑓 (𝐺 ′) = ∑
𝑒∈𝐸′ 𝜔 (𝑒) on the set of connected subgraphs of 𝐺 . This

Algorithm 1: The (1 + (𝜆, 𝜆)) GA minimizing a pseudo-

Boolean function 𝑓 : {0, 1}𝑛 → R.
1 𝑥 ← random bit string of length 𝑛;

2 while not terminated do
Mutation phase:

3 Choose ℓ ∼ Bin (𝑛, 𝑝);
4 for 𝑖 ∈ [1..𝜆] do
5 𝑥 (𝑖) ← a copy of 𝑥 ;

6 Flip ℓ bits in 𝑥 (𝑖) chosen uniformly at random;

7 end
8 𝑥 ′ ← argmin𝑧∈{𝑥 (1) ,...,𝑥 (𝜆) } 𝑓 (𝑧);

Crossover phase:
9 for 𝑖 ∈ [1..𝜆] do
10 Create 𝑦 (𝑖) by taking each bit from 𝑥 ′ with

probability 𝑐 and from 𝑥 with probability (1 − 𝑐);
11 end
12 𝑦 ← argmin𝑧∈{𝑦 (1) ,...,𝑦 (𝜆) } 𝑓 (𝑧);
13 if 𝑓 (𝑦) ≤ 𝑓 (𝑥) then
14 𝑥 ← 𝑦;

15 end
16 end

is a relatively simple problem, and there exist algorithms which

can solve it precisely in 𝑂 (|𝐸 | log |𝐸 |) or 𝑂 (|𝑉 | log |𝑉 | + |𝐸 |) time.

However, in the context of the theory of evolutionary computation

this problem lets us analyze the behavior of the EAs on graph

problems [9, 16]. For this reason we chose this problem to make

the first steps towards the runtime analysis of the (1 + (𝜆, 𝜆)) GA
on graph problems.

To run the (1 + (𝜆, 𝜆)) GA on the MST problem we use the same

representation of potential solutions and the same fitness function

as in [16]. We represent graph𝐺 ′ = (𝑉 , 𝐸 ′) as a bit string of length

𝑚 B |𝐸 | in which each bit is equal to one if the corresponding edge

from 𝐸 is present in 𝐸 ′ and is equal to zero otherwise. As a fitness

function we use

𝑓 (𝐺 ′) = 𝐴2𝑐𝑐 (𝐺 ′) +𝐴|𝐸 ′ | +
∑︁
𝑒∈𝐸′

𝜔 (𝑒),

where 𝑐𝑐 (𝐺 ′) is the number of connected components in𝐺 ′ and𝐴 =

max{∑𝑒∈𝐸 𝜔 (𝑒), |𝐸 |} + 1. With this fitness function any connected

graph has a better (smaller) fitness than any unconnected graph,

any spanning tree has a better fitness than any connected graph

with extra edges and among the spanning trees the best fitness

belongs to the tree of minimum weight.

It was shown in [16] that when the (1 + 1) EA optimizes this

fitness function, it finds a connected graph in 𝑂 (𝑚 log(𝑛)) itera-
tions (where 𝑛 B |𝑉 |), then it finds a spanning tree in another

𝑂 (𝑚 log(𝑛)) iterations and then it needs 𝑂 (𝑚2
log(𝑛𝜔max)) more

iterations to transform this tree into the minimum one, where𝜔max

is the maximal weight of an edge. An simple proof for the third

phase of the optimization was also shown in [9].

1987

The (1 + (𝜆, 𝜆)) GA on MST GECCO ’21, July 10–14, 2021, Lille, France

3 THE RUNTIME ANALYSIS
In this sectionwe show that the expected runtime of the (1 + (𝜆, 𝜆)) GA
on all graphs with a uniqueMST is Ω(𝑚2

𝜆2
) iterations, if it starts with

a non-minimum spanning tree. Since in each iteration we perform

2𝜆 fitness evaluations, the runtime in terms of fitness evaluations

is Ω(𝑚2

𝜆
).

3.1 Notation
First we introduce some definitions to help us prove the lower

bound on the runtime. For all definitions we assume a fixed search

point 𝑥 representing a subtree of the considered graph in the start

of iteration 𝑡 .

• 𝑛 — total number of verticies.

• 𝑚 — total number of edges.

• 𝑋𝑡 = 𝑠 — a random variable, which equals to the number

of edges from the MST absent from the particular subtree

described by the current individual 𝑥 .

• 𝑟 = {𝑖1 ...𝑖𝑠 , 𝑖𝑠+1 ...𝑖2𝑠 } — a set of flips required to complete

the MST starting from the search point 𝑥 . The first 𝑠 indecies

correspond to edges from the MST absent from 𝑥 . The last 𝑠

indecies correspond to edges from 𝑥 which are not present

in the MST. This set is fixed for a particular 𝑥 .

• 𝑒 ∈ {𝑖1 ...𝑖ℓ−2𝑠 } — a set of error flips after the mutation of the

current individual 𝑥 . Each 𝑖 𝑗 is a position in the bit string

which is not the 2𝑠 required bits from 𝑟 .

• 𝑝ℓ — the probability to choose the particularmutation strength

ℓ from Bin(𝑛, 𝑝).
• 𝑥𝑒 — a search point with 𝑟 required bit flips and additional 𝑒

error bit flips.

• 𝑝𝑚,𝑒 — the probability of 𝑥𝑒 winning the mutation stage.

• 𝑝 ′𝑚,𝑒 — the probability of 𝑥𝑒 appearing as one of 𝜆 mutants

in the mutation stage.

• 𝑝𝑐,𝑒 — the probability of crossover phase flipping back bits

from 𝑒 but leaving the necessary 𝑟 bits untouched thus com-

pleting the MST.

• 𝑝𝑠 — the probability to obtain the MST from the current

individual 𝑥 .

3.2 The Lower Bound
Since in every iteration the (1 + (𝜆, 𝜆)) GA performs 2𝜆 fitness eval-

uations, the transition between the runtime in terms of iterations

and the runtime in terms of fitness iterations is trivial. Hence we

formulate our result as the following theorem.

Theorem 3.1. The expected number of fitness evaluations which
the (1 + (𝜆, 𝜆)) GA makes before it finds the optimum of the MST
problem with a unique solution is 𝐸 [𝑇] = Ω(𝑚2

𝜆
), if it starts with a

non-minimum spanning tree.

To prove this claim we first introduce two auxiliary lemmas. Our

aim is to analyze the last jump from non-optimal spanning tree

with 𝑋𝑡 = 𝑠 to the MST with 𝑋𝑡+1 = 0. This implies that 𝑠 edges of

the MST yet absent from 𝑥 replace 𝑠 edges present in 𝑥 but not in

the MST.

We fix the number of bits ℓ which we flip in the mutation phase.

Then for the success probability of the last optimisation step we

have 𝑝𝑠 =
∑𝑚
ℓ=2𝑠 𝑝ℓ

∑
𝑒 𝑝𝑚,𝑒𝑝𝑐,𝑒 .

Lemma 3.2. For all 𝑙 ∈ [2𝑠,𝑚] we have∑𝑒 𝑝𝑚,𝑒 ≤ 𝜆
(ℓ−2𝑠+1) ·... ·ℓ
(𝑚−2𝑠+1) ·... ·𝑚 .

Proof. First, we determine the probability to generate 𝑥𝑒 in the

mutation stage 𝑝 ′𝑚,𝑒 . Note that 𝑝𝑚,𝑒 ≤ 𝑝 ′𝑚,𝑒 , since 𝑥𝑒 may not be

the mutant with the best fitness in a sample. Therefore, since for

all𝑚 ≥ 2 we have
1

𝑒 ≥ (1 −
1

𝑚)
𝑚
, we obtain∑︁

𝑒

𝑝𝑚,𝑒 ≤
∑︁
𝑒

𝑝 ′𝑚,𝑒

=
∑︁
𝑒

1 −
(
1 − (ℓ − 2𝑠 + 1) · . . . · ℓ(𝑚 − 2𝑠 + 1) · . . . ·𝑚

(
𝑚 − 2𝑠
ℓ − 2𝑠

)−1)𝜆
≤

∑︁
𝑒

[
1 −

(
1 − 𝜆 (ℓ − 2𝑠 + 1) · . . . · ℓ(𝑚 − 2𝑠 + 1) · . . . ·𝑚

(
𝑚 − 2𝑠
ℓ − 2𝑠

)−1)]
=

∑︁
𝑒

𝜆
(ℓ − 2𝑠 + 1) · . . . · ℓ
(𝑚 − 2𝑠 + 1) · . . . ·𝑚

(
𝑚 − 2𝑠
ℓ − 2𝑠

)−1
.

Note that there exist

(𝑚−2𝑠
ℓ−2𝑠

)
different error sets, since we have

ℓ − 2𝑠 additional edges to flip and𝑚 − 2𝑠 options.

∑︁
𝑒

𝜆
(ℓ − 2𝑠 + 1) · . . . · ℓ
(𝑚 − 2𝑠 + 1) · . . . ·𝑚

(
𝑚 − 2𝑠
ℓ − 2𝑠

)−1
= 𝜆
(ℓ − 2𝑠 + 1) · . . . · ℓ
(𝑚 − 2𝑠 + 1) · . . . ·𝑚 .

□

Lemma 3.3. For all 𝑙 ∈ [2𝑠,𝑚] we have 𝑝𝑐,𝑒 (ℓ) ≤ 1

𝜆2𝑠−1

(
1

𝑒

) ℓ−2𝑠
𝜆

.

Proof. The value of 𝑝𝑐,𝑒 does not depend on particular 𝑒 but

only on the value of ℓ − 2𝑠 . Therefore,

𝑝𝑐,𝑒 = 1 −
(
1 − 1

𝜆2𝑠

(
1 − 1

𝜆

)ℓ−2𝑠)𝜆
≤ 1 −

(
1 − 1

𝜆2𝑠

(
1

𝑒

) ℓ−2𝑠
𝜆

)𝜆
≤ 1 −

(
1 − 1

𝜆2𝑠−1

(
1

𝑒

) ℓ−2𝑠
𝜆

)
=

1

𝜆2𝑠−1

(
1

𝑒

) ℓ−2𝑠
𝜆

.

In this computations we use that for all 𝑚 ≥ 2 we have
1

𝑒 ≥
(1 − 1

𝑚)
𝑚

and Bernoulli’s inequality (1 + 𝑥)𝑟 ≥ 1 + 𝑟𝑥 . □

We are now in position to prove Theorem 3.1.

Proof of Theorem 3.1. By Lemmas 3.3 and 3.2, we estimate the

upper bound on the probability to find the optimum in one iteration

𝑝𝑠 =
∑𝑚
ℓ=2𝑠 𝑝ℓ

∑
𝑒 𝑝𝑚,𝑒𝑝𝑐,𝑒 :

𝑚∑︁
ℓ=2𝑠

𝑝ℓ

∑︁
𝑒

𝑝𝑚,𝑒𝑝𝑐,𝑒 ≤
𝑚∑︁
ℓ=2𝑠

𝑝ℓ
1

𝜆2𝑠−1

(
1

𝑒

) ℓ−2𝑠
𝜆 ∑︁

𝑒

𝑝𝑚,𝑒

≤
𝑚∑︁
ℓ=2𝑠

𝑝ℓ
1

𝜆2𝑠−2

(
1

𝑒

) ℓ−2𝑠
𝜆 (ℓ − 2𝑠 + 1) · . . . · ℓ
(𝑚 − 2𝑠 + 1) · . . . ·𝑚 .

Recalling that 𝑝ℓ =
(𝑚
ℓ

) (
𝜆
𝑚

)ℓ (
1 − 𝜆

𝑚

)𝑚−ℓ
we have

𝑚∑︁
ℓ=2𝑠

𝑝ℓ
1

𝜆2𝑠−2

(
1

𝑒

) ℓ−2𝑠
𝜆 (ℓ − 2𝑠 + 1) · . . . · ℓ
(𝑚 − 2𝑠 + 1) · . . . ·𝑚

1988

GECCO ’21, July 10–14, 2021, Lille, France D. Antipov and M. Shnytkin

=
1

𝜆2𝑠−2

𝑚∑︁
ℓ=2𝑠

(
𝑚

ℓ

) (
𝜆

𝑚

)ℓ (
1 − 𝜆

𝑚

)𝑚−ℓ
·
(
1

𝑒

) ℓ−2𝑠
𝜆 (ℓ − 2𝑠 + 1) · . . . · ℓ
(𝑚 − 2𝑠 + 1) · . . . ·𝑚

≤ 1

𝜆2𝑠−2

𝑚∑︁
ℓ=2𝑠

(𝑚 − 2𝑠 + 1) · . . . ·𝑚
(ℓ − 2𝑠 + 1) · . . . · ℓ

(
𝑚 − 2𝑠
ℓ − 2𝑠

)
·
(
𝜆

𝑚

)ℓ (
1 − 𝜆

𝑚

)𝑚−ℓ (
1

𝑒

) ℓ−2𝑠
𝜆 (ℓ − 2𝑠 + 1) · . . . · ℓ
(𝑚 − 2𝑠 + 1) · . . . ·𝑚

≤
(
𝜆

𝑚

)
2𝑠

1

𝜆2𝑠−2

𝑚∑︁
ℓ=2𝑠

(
𝑚 − 2𝑠
ℓ − 2𝑠

) (
𝑒−

1

𝜆
𝜆

𝑚

)ℓ−2𝑠 (
1 − 𝜆

𝑚

)𝑚−ℓ
=

𝜆2

𝑚2𝑠

(
1 − 𝜆

𝑚
+ 𝑒−

1

𝜆
𝜆

𝑚

)𝑚−2𝑠
.

To simplify the last clause we use the Taylor formula for the

exponential function 𝑒−
1

𝜆 = 1 − 1

𝜆
+ 1

2𝜆2
+ 𝑜 (1

𝜆2
), where the 𝑜 (1

𝜆
)

term is negative. Hence, we determine

𝜆2

𝑚2𝑠

(
1 − 𝜆

𝑚
+ 𝑒−

1

𝜆
𝜆

𝑚

)𝑚−2𝑠
=

𝜆2

𝑚2𝑠

(
1 − 𝜆

𝑚
+

(
1 − 1

𝜆
+ 1

2𝜆2
+ 𝑜

(
1

𝜆2

))
𝜆

𝑚

)𝑚−2𝑠
≤ 𝜆2

𝑚2𝑠

(
1 − 1

𝑚
+ 1

2𝜆𝑚

)𝑚−2𝑠
=

𝜆2

𝑚2𝑠

(
1 − 1

𝑚

(
1 − 1

2𝜆

))𝑚−2𝑠
≤ 𝜆2

𝑚2𝑠

(
1 − 1

2𝑚

)𝑚−2𝑠
≤ 𝜆2

𝑚2𝑠

(
1

𝑒

) 𝑚−2𝑠
2𝑚

≤ 𝜆2

𝑚2𝑠
.

Now we estimate 𝐸 [𝑇𝑙𝑎𝑠𝑡], the expected runtime on the last step.

For this we note that the last step is the series of trials until obtaining

the MST. Then the amount of iterations until obtaining the MST

can be described by the geometric distribution with parameter

𝑝 ≤ 𝜆2

𝑚2𝑠 , which reaches its maximum in 𝑠 = 1. Recalling that the

expectation on the number of trials until the first success is
1

𝑝 we

have 𝐸 [𝑇𝑙𝑎𝑠𝑡] = 1

𝑝 = Ω(𝑚2

𝜆2
). Finally, using 𝐸 [𝑇𝑙𝑎𝑠𝑡] ≤ 𝐸 [𝑇] we

obtain the result of the theorem. □

4 CONCLUSION
In this paper we analysed the (1 + (𝜆, 𝜆)) GA on MST problem

with unique solution and proved that its runtime is Ω(𝑚2

𝜆
) fitness

evaluations. This means that for 𝜆 = Θ(1) we do not have much

advantage over the 𝑂 (𝑚2
log(𝑚𝜔max)) runtime of the (1 + 1) EA.

Although for 𝜆 = Ω(1) our lower bound is more optimistic, we

conjecture that with high values of 𝜆 it becomes hard to detect

good mutations in the mutation offspring, since with an aggressive

mutation the better individual is not the one with the right bit flip,

but the one with less connected components. This high priority of

the number of connected components in the fitness function on the

one hand helps us to find a connected graph faster, but on the other

hand it shadows the beneficial mutations in the late optimisation

stages.

For the further research of the (1 + (𝜆, 𝜆)) GA on this problem

we suggest to modify the algorithm so that it was more tailored

for the problem. Among the most natural modifications we see

using a different fitness-function or using a more specific mutation

operator, which maintains an invariant that any mutation offspring

is still a spanning tree.

ACKNOWLEDGMENTS
The reported study was funded by RFBR and CNRS, project number

20-51-15009.

REFERENCES
[1] Denis Antipov, Maxim Buzdalov, and Benjamin Doerr. 2020. Fast mutation in

crossover-based algorithms. In Genetic and Evolutionary Computation Conference,
GECCO 2020. ACM, 1268–1276.

[2] Denis Antipov, Benjamin Doerr, and Vitalii Karavaev. 2019. A tight runtime anal-

ysis for the (1 + (𝜆, 𝜆)) GA on LeadingOnes. In Foundations of Genetic Algorithms,
FOGA 2019. ACM, 169–182.

[3] Denis Antipov, Benjamin Doerr, and Vitalii Karavaev. 2020. The (1 + (𝜆, 𝜆)) GA
is even faster on multimodal problems. In Genetic and Evolutionary Computation
Conference, GECCO 2020. ACM. To appear.

[4] Anton Bassin and Maxim Buzdalov. 2020. The (1 + (𝜆, 𝜆)) genetic algorithm for

permutations. In Genetic and Evolutionary Computation Conference, GECCO 2020,
Companion Material. ACM, 1669–1677.

[5] Maxim Buzdalov and Benjamin Doerr. 2017. Runtime analysis of the (1+ (𝜆, 𝜆))
genetic algorithm on random satisfiable 3-CNF formulas. In Genetic and Evolu-
tionary Computation Conference, GECCO 2017. ACM, 1343–1350.

[6] Benjamin Doerr and Carola Doerr. 2018. Optimal static and self-adjusting

parameter choices for the (1+(𝜆, 𝜆)) genetic algorithm. Algorithmica 80 (2018),
1658–1709.

[7] Benjamin Doerr, Carola Doerr, and Franziska Ebel. 2015. From black-box com-

plexity to designing new genetic algorithms. Theoretical Computer Science 567
(2015), 87–104.

[8] Benjamin Doerr, Edda Happ, and Christian Klein. 2007. A tight bound for the (1

+ 1)-EA for the single source shortest path problem. In Congress on Evolutionary
Computation, CEC 2007. IEEE, 1890–1895.

[9] Benjamin Doerr, Daniel Johannsen, and Carola Winzen. 2010. Multiplicative

drift analysis. In Genetic and Evolutionary Computation Conference, GECCO 2010.
ACM, 1449–1456.

[10] Benjamin Doerr, Daniel Johannsen, and Carola Winzen. 2012. Multiplicative drift

analysis. Algorithmica 64 (2012), 673–697.
[11] BenjaminDoerr, FrankNeumann, andAndrewM. Sutton. 2015. Improved runtime

bounds for the (1 + 1) EA on random 3-CNF formulas based on fitness-distance

correlation. In Genetic and Evolutionary Computation Conference, GECCO 2015.
ACM, 1415–1422.

[12] Stefan Droste, Thomas Jansen, and Ingo Wegener. 1998. A rigorous complexity

analysis of the 1+ 1 evolutionary algorithm for separable functions with boolean

inputs. Evolutionary Computation 6 (1998), 185–196.

[13] Brian W. Goldman and William F. Punch. 2014. Parameter-less population pyra-

mid. In Genetic and Evolutionary Computation Conference, GECCO 2014. ACM,

785–792.

[14] Vladimir Mironovich and Maxim Buzdalov. 2015. Hard test generation for max-

imum flow algorithms with the fast crossover-based evolutionary algorithm.

In Genetic and Evolutionary Computation Conference, GECCO 2015, Companion
Material. 1229–1232.

[15] Frank Neumann and Andrew M. Sutton. 2019. Runtime analysis of the (1 +

1) evolutionary algorithm for the chance-constrained knapsack problem. In

Foundations of Genetic Algorithms, FOGA 2019. ACM, 147–153.

[16] Frank Neumann and Ingo Wegener. 2007. Randomized local search, evolutionary

algorithms, and the minimum spanning tree problem. Theoretical Computer
Science 378 (2007), 32–40.

[17] Pietro Simone Oliveto, Jun He, and Xin Yao. 2009. Analysis of the (1+1)-EA for

finding approximate solutions to vertex cover problems. IEEE Transactions on
Evolutionary Computation 13 (2009), 1006–1029.

[18] Feng Shi, Frank Neumann, and Jianxin Wang. 2019. Runtime analysis of evolu-

tionary algorithms for the depth restricted (1, 2)-minimum spanning tree problem.

In Foundations of Genetic Algorithms, FOGA 2019. ACM, 133–146.

[19] Carsten Witt. 2005. Worst-case and average-case approximations by simple

randomized search heuristics. In Symposium on Theoretical Aspects of Computer
Science, STACS 2005. Springer, 44–56.

[20] Carsten Witt. 2014. Revised analysis of the (1+1) EA for the minimum spanning

tree problem. In Genetic and Evolutionary Computation Conference, GECCO 2014.
ACM, 509–516.

1989

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 The (1 + (,)) GA
	2.2 The Minimum Spanning Tree Problem

	3 The Runtime Analysis
	3.1 Notation
	3.2 The Lower Bound

	4 Conclusion
	Acknowledgments
	References

