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ABSTRACT
The most common method in the Evolutionary Algorithm commu-
nity to handle constraints is to use penalties. The simplest being
the death penalty, which rejects solutions that violate constraints.
However, its inefficiency in search spaces possessing small feasible
regions spurred research into adaptive penalties and other com-
petitive methods. A major criticism of these approaches is that
they require the user to fine-tune parameters or design problem-
dependent operators.We propose to do awaywith penalty functions
for problems over the Euclidean space when the constraint is an
equality concerning the Euclidean distance. This paper describes
an evolutionary algorithm on the unit hypersphere based on rep-
resenting the population with the von Mises-Fisher probability
distribution from the field of Directional statistics. We demonstrate
its utility by solving the support vector classification problem for a
few datasets.
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1 INTRODUCTION
Evolutionary algorithms typically handle problems constrained in
the set of acceptable solutions by imposing penalties on constraint
violations[3]. However, there are significant challenges with using
penalty functions, such as difficulty assigning priorities to the var-
ious constraints and the objective function and stagnation when
the fitness function is undefined at infeasible points.
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An alternative constraint handling method is to find transfor-
mations that make it easier to explore the feasible region. This
paper presents an evolutionary algorithm used to search over the 𝑑-
dimensional Euclidean space with an equality constraint on the Eu-
clidean distance. We achieved this by noting that such constrained
search in the Euclidean space is equivalent to an unconstrained
search over the (𝑑 − 1)-dimensional hypersphere. Hence, we use
the von Mises-Fisher probability distribution as a mechanism to
generate feasible solutions.

2 VON MISES-FISHER DISTRIBUTION
A von Mises-Fisher (vMF) distribution is a probability distribution
over the points in a unit hypersphere. Its density, parameterized by
a mean direction 𝝁 and a concentration parameter 𝜅, is given by

𝑓 (𝒙 | 𝝁, 𝜅) = 𝑐𝑑 (𝜅) exp(𝜅𝝁⊤𝒙)

where 𝑐𝑑 is the normalization constant (see [4] for details). The vec-
tors 𝒙, 𝝁 ∈ R𝑑 are both 𝑑-dimensional unit vectors, or equivalently,
are elements of S𝑑−1, the (𝑑−1)-dimensional unit hypersphere. The
concentration parameter determines how strongly the unit vectors
generated according to 𝑓 cluster around the mean direction.

Algorithm 1 provides the pseudocode to sample from a von
Mises-Fisher distribution, and it incorporates Wood’s algorithm [7]
to efficiently sample from the marginal density of 𝑤 = 𝝁⊤𝒙 . To
estimate a vMF distribution, let X = (𝒙1, 𝒙2, . . . 𝒙𝑛) be a sequence
of points in descending order of fitness, 𝑝𝑖 be the selection prob-
ability of the point 𝒙𝑖 , 𝑹 =

∑𝑛
𝑖=1 𝑝𝑖𝒙𝑖 , 𝑟 = ∥𝑹∥, and ∑𝑛

𝑖=1 𝑝𝑖 = 1.
From X, we want to find the maximum likelihood estimates (MLE)
of 𝝁 and 𝜅 by maximizing 𝑛 ln 𝑐𝑑 (𝜅) +𝑛𝜅𝝁⊤ (

∑
𝑝𝑖𝒙𝑖 ) subject to the

constraints 𝝁⊤𝝁 = 1 and 𝜅 ≥ 0. Following the derivation in [2], we
arrive at 𝝁 = 𝑹

𝑟 as the MLE solution for 𝝁, and �̂� ≈ 𝑟 (𝑑−𝑟 2)
1−𝑟 2 as an

approximate solution for 𝜅.
The proposed optimization algorithm samples and updates the

vMF probability model in each iteration. We introduce a learning
rate 𝜂 and use an exponential learning schedule to control the pace
at which we update 𝜅. The goal is to encourage exploration at
the early stages by diminishing the effects of the new 𝜅 estimates.

We set the selection probabilities 𝑝𝑖 =
𝑚𝑎𝑥

(
0, ln

(
1+ 𝜆2

)
−ln 𝑖

)
∑𝜆

𝑖=1𝑚𝑎𝑥

(
0, ln

(
1+ 𝜆2

)
−ln 𝑖

) ,
an adaptation of the weights used in the NES [6] algorithm. The
population size 𝜆 is set to 4+⌊3 ln𝑑⌋, same as that of the CMA-ES [1]
algorithm.
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Algorithm 1: Sampling a von Mises-Fisher distribution
Input: 𝝁, 𝜅, 𝑑
Output: a realization of the vMF distribution

𝑏 ← 𝑑 − 1
2𝜅 +

√
4𝜅2 + (𝑑 − 1)2

𝑥 ← 1 − 𝑏
1 + 𝑏

𝑐 ← 𝜅𝑥 + (𝑑 − 1) ln(1 − 𝑥2)
repeat

draw 𝑧 ∼ 𝐵𝑒𝑡𝑎( 𝑑−12 , 𝑑−12 )
draw 𝑢 ∼ 𝑈𝑛𝑖 𝑓 𝑜𝑟𝑚(0, 1)

𝑤 ← 1 − 𝑧 (1 + 𝑏)
1 − 𝑧 (1 − 𝑏)

until 𝜅𝑤 + (𝑑 − 1) ln (1 − 𝑥𝑤) − 𝑐 ≥ ln𝑢
𝒚 ∼ N(0, 𝑰𝑑 )
𝒕 ← 𝒚 − (𝝁⊤𝒚)𝝁
𝝂 ← 𝒕

∥𝒕 ∥
return𝑤𝝁 +

(√
1 −𝑤2

)
𝝂

3 APPLICATION TO LINEAR SUPPORT
VECTOR CLASSIFICATION

A linear SVM finds a maximum-margin hyperplane, with normal
vector 𝒘 and intercept 𝑏, that separates two classes of training
examples. We restrict the search for 𝒘 to the set of unit vectors,
i.e., ∥𝒘 ∥2 = 1, as only the direction matters.

The population in each iteration is a set of candidate solutions
for 𝒘 . To find the intercept 𝑏𝑖 for each individual 𝒘𝑖 , let 𝑋+ =

{𝑥+1 , 𝑥
+
2 , . . . , 𝑥

+
𝑚} and 𝑋− = {𝑥−1 , 𝑥

−
2 , . . . , 𝑥

−
𝑛 } be the set of projec-

tions on𝒘𝑖 for the positive and negative classes, respectively. We
set 𝑏𝑖 to −𝑡 where 𝑡 is the decision point that maximizes the num-
ber of correct classifications per class normalized by the size of the
class, i.e.,

|{𝑥 | 𝑥 ≤ 𝑡 − Δ− ∧ 𝑥 ∈ 𝑋−}|
𝑛

+
��{𝑥 | 𝑥 > 𝑡 + Δ+ ∧ 𝑥 ∈ 𝑋+

}��
𝑚

Δ− and Δ+ are class margins introduced to improve generalization
by considering only the points that are on the correct side of their
class margins.

4 EXPERIMENT AND RESULTS
We experimented on five datasets from the subfield of multilabel
classification, where each example is associated with a set of labels.
The most widely used multilabel classification method, Binary Rele-
vance, transforms the problem into learning an independent binary
classifier for each label [5]. We reduced each dataset to include
only the top five ranking labels. The labels were ranked by how
close the number of positive examples is to the number of negative
examples.

For each dataset, we compared the macro-averaged 𝐹1-score
(𝐹1-scores averaged over the labels) on a test set for two Binary
Relevance schemes with different underlying classifiers. The first,
termed the Standard SVM, used a linear SVM. For each label, the

hyperparameter 𝐶 is tuned through a 5-fold cross-validation grid
search tomaximize the 𝐹1-score. The other classifier, termed EvMFA
SVM, used a linear classifier trained by the proposed algorithm also
to maximize the 𝐹1-score in at most a thousand iterations. To pre-
vent the model from overfitting to the training data, we evaluated
the model on a validation dataset after every ten generations and
saved the top five models. The prediction at test time was a simple
majority vote of these five models.

The concentration parameter 𝜅 was initially set to 0, and class
margins were set to 5% of the interquartile range of the projections.
We used an initial learning rate of 0.01 and a strengthening factor
of 1.004 so that the learning rate is at 0.5 after a thousand iterations.
Table 1 details the outcome of the experiment. The two methods
achieved similar results on the Yeast dataset and appeared to be on
equal footing in the other four datasets.

Table 1: Comparison of base classifiers in a Binary Rele-
vance multilabel classification strategy. The reported val-
ues are the mean and standard deviation (SD) of the macro-
averaged 𝐹1-scores averaged over ten repetitions.

Dataset Standard SVM EvMFA SVM

Mean SD Mean SD

Yeast 0.6652 0 0.6628 0.007827
Delicious 0.6278 0 0.6481 0.001625
Enron 0.6724 0 0.6854 0.007047
Scene 0.7184 0 0.7065 0.007878
TMC2007 0.7751 0 0.7565 0.003562

5 CONCLUSIONS
This paper presented and empirically demonstrated the usefulness
of an evolutionary algorithm for an unconstrained search over the
unit hypersphere. The vMF distribution used is one of the simplest
distributions in Directional statistics because it does not capture
interactions between variables. This limitation suggests a promising
path for future contributions.
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