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ABSTRACT
Many real-world applications require optimization in dynamic envi-
ronments where the challenge is to find optima of a time-dependent
objective function while tracking them over time. Many evolution-
ary approaches have been developed to solve Dynamic Optimiza-
tion Problems (DOPs). However, there is still a need for more effi-
cient methods. Recently, a new interesting trend in dealing with
optimization in dynamic environments has emerged toward de-
veloping new Reinforcement Learning (RL) algorithms that are
expected to give a new breath in DOPs community. In this paper,
a new Q-learning RL algorithm is developed to deal with DOPs
based on new defined states and actions that are mainly inspired
from Evolutionary Dynamic Optimization (EDO) aiming appropri-
ate exploitation of the strengths of both RL and EDO techniques
to handle DOPs. The proposed RL model has been assessed using
modified Moving Peaks Benchmark (mMPB) problem. Very com-
petitive results have been obtained and good performance has been
achieved compared with other dynamic optimization algorithm.
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• Theory of computation→ Reinforcement learning; • Com-
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1 INTRODUCTION
Many real world problems require optimization over time because
of the dynamic nature of the environments. Typical fields where
such problems need to be solved include economics, engineering,
communication systems, bioinformatics and machine learning [1],
to name just a few. Time dependent optimization problems are
most commonly known as Dynamic Optimization Problems (DOPs).
Solving DOPs is not only a matter of locating global optima as
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in static optimization but of being able to track such optima in
changing objective landscapes as well. DOPs have been defined in
different ways. A unified description can be found in [3].

Recently, a new interesting trend in dealing with dynamic en-
vironments has emerged toward developing new algorithms that
are able to effectively handle DOPs using Reinforcement Learning
(RL) system [3]. Their proposal is mainly based on drawing a con-
nection between Evolutionary Dynamic Optimization (EDO) and
RL while trying to solve DOPs. In this paper and based on the new
insight provided in [3], we propose a new Q-learning RL algorithm
to solve dynamic optimization. The agent in our proposed model
is trained to be able to deal with future dynamic environments by
taking the appropriate action according to the optimal learning
policy. Inspired from EDO experience of handling DOPs, each state
represents a potential solution from the search space. Furthermore,
several actions have been introduced in order to adapt the learner
agent to the different states of dynamic environments. Besides,
it is worth to mention that our proposed Q-learning model does
not require any change detector to know the occurrence of future
changes in the search space. Rather, it is the task of the learner
agent to learn how to deal with different complex situations. The
conducted experimental study is based on the modified moving
peaks benchmark (mMPB) problem [2], where only single peak sce-
narios are considered, to evaluate the performance of the developed
algorithm.

2 MOTIVATION AND PROPOSED APPROACH
The authors in [3], present a new interesting definition framework
of DOPs and hence draw a connection between EDO and RL, al-
lowing exploitation of their strengths to better solve DOPs. In this
context and inspired by the new vision proposed in [3], we pro-
pose a new dynamic optimization algorithm based on RL to cope
with DOPs. The proposed approach use the famous Q-learning
algorithm to handle with dynamic environments. Unlike the work
presented in [3], we have introduced new definitions of the ele-
ments that make up our proposed Q-learning algorithm including:
states, actions, policy and reward.

-State: The state space is one of the major challenges in RL [5].
State spaces are usually very large when we deal with real-world
problems or continuous search spaces. In our case, the state space 𝑆
will represent the candidate solutions where the objective is to find
the optimal state at each time a change occurs in the environment.
Therefore, the size of the state space 𝑆 (|𝑆 |) will be a parameter to
study in the experimental settings.

-Action: In this part, we will describe the set of actions 𝐴 used
to train the agent to learn how to cope with DOPs. These actions
are inspired from EA’s handling of dynamic problems as follow:
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Figure 1: The averaged offline error over 30 runs obtained
by our proposedmodel under different run conditions: with
all actions/without some actions.

• Action 1: all candidate solutions (states) move towards the
best solution found so far (𝑏𝑒𝑠𝑡𝑠𝑡𝑎𝑡𝑒 ).

• Action 2: apply a local search near to the best solution found
so far.

• Action 3: apply a local search near to the current state.
• Action 4: randomize all candidate solutions and reevaluate
the best solution found so far.

-Policy: Given state 𝑠 , an action 𝑎 will be selected according to
the famous 𝜖-greedy policy function [5] used for exploration.

-Reward: The agent in our proposed algorithm is rewarded
according to the spatial difference and the objective function values
difference between the new state 𝑠 ′ and the current state 𝑠 .

The proposed algorithm works as follows, in the initialization
phase, a𝑄-Table matrix of |𝑆 |x|𝐴| is initialized with generated zeros.
After that, |𝑆 | states in the search space are assigned values ran-
domly for each dimension within the corresponding bounds, then
the initial positions are evaluated based on the objective function.
The algorithm proceeds iteratively as follow: firstly, the best state in
the search space is updated. Then, the Q-learning is started for each
state 𝑠 . Based on the 𝜖-greedy policy function, the agent selects an
action 𝑎 that will be used later to calculate the new state 𝑠 ′ and
the corresponding reward 𝑅. The number of states in the search
space is constant where the new state 𝑠 ′ position replaces the cur-
rent state 𝑠 . While the new next action 𝑎′ is the best action index
corresponding to the max Q value in the state 𝑠 , which will be in-
corporated in the TD-target (Temporal Difference target). Through
Bellman’s equations, the agent try to minimize the gap between
the expected future return of the TD-target and the 𝑄 (𝑠, 𝑎) value
and hence building an action policy iteratively.

3 EXPERIMENTAL RESULTS
Next to our RL algorithm, it is worth to point out that in order to
fairly compare the results, we have also created a new simple EDO
algorithm based on Quantum Particle Swarm Optimization (QPSO)
[4]. We adopt the acronym Dy-QPSO (Dynamic QPSO) to refer to
this proposed algorithm.
From the experimental results and under different environmental
conditions (Table 1), our proposed RL model shows a very competi-
tive performance compared to EDO algorithms in handling DOPs.
The proposed RL algorithm, in its course of learning, exploits ac-
tions with the high Q-values to receive the best reward, at the same

Table 1: Comparison of offline error (standard deviation) be-
tween Q-learning and Dy-QPSO algorithms on the mMPB
problem with different change frequencies and different
shift length.

Frequency (𝑓 𝑟𝑞) Severity (𝑠𝑡 )

Values Q-learning Dy-QPSO Values Q-learning Dy-QPSO

500 4.57(1.82) 3.96(1.38) 1 0.46(0.18) 0.84(0.15)
1000 2.31(0.97) 2.02(0.61) 2 0.72(0.24) 0.93(0.10)
2500 0.99(0.39) 1.38(0.24) 3 0.88(0.29) 1.08(0.17)
5000 0.46(0.18) 0.84(0.14) 5 1.39(0.43) 1.50(0.36)
10000 0.25(0.10) 0.44(0.05) 6 1.77(0.44) 1.65(0.46)

time, it explores other actions in order to select the better ones in
the future.
In order to show the importance of the proposed actions (Action 1,. . . ,
Action 4) used during the learning process, Figure 1 shows the ef-
fects of not using each of these actions on the model performance.
Compared to the blue solid curve of the offline error labeled "With
all Actions" in the same figure, the absence of Action 1 prevents
the algorithm to totally converge towards the optimal solution in
each new environment. Whilst, the absence of Action 2 or Action
3 means the absence of local search which impacts negatively the
quality of the global best solution and this appears clearly from the
30th environmental change (i.e. after 200000 evaluations). However,
the Action 4 shows significant importance in the learning process
and its absence means the efficiency degradation of the proposed
model. This can be explained by the effectiveness of Action 4 in
dealing with the outdated memory problem resulting from the
environmental changes.

4 CONCLUSIONS AND FUTUREWORK
In this paper, a new Q-learning RL algorithm is proposed to deal
with optimization in dynamic environments. The elements that
make up our proposed Q-learning algorithm including states, ac-
tions and reward function were defined in a new way inspired
from EDO. For future work, it would be interesting to design more
dynamic optimization algorithms based on RL models through a
thorough exploration of the synergy between RL and EDO in han-
dling DOPs.
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