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ABSTRACT
Cooperative co-evolution (CC) is an effective technique for opti-
mizing high dimensional problems. The scalability and efficiency of
CC can be further improved by combing with distributed comput-
ing, i.e., distributed CC (dCC). How to balance the cooperation and
communication among sub-problems is an important issue in dCC.
In this paper, we construct series of large-scale benchmark func-
tions, and conduct experimental studies to investigate the effect
of different cooperative frequency in dCC. Experiments suggest
that frequency of cooperation will not affect the performance of
fully separable and partially separable problems unless frequent
coordination among sub-populations consumes too many limited
computing resources. And overlapping problems need a moderate
cooperative frequency to get better performance.
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1 INTRODUCTION
Distributed cooperative co-evolution(dCC) is an efficient technique
to optimize large-scale problems[1],[2]. In dCC, an optimization
problem is decomposed into several sub-components and these
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sub-components are handled by different processors. In most real-
world problems, the grouping strategy is difficult to achieve al-
most no interaction between the sub-problems. Thus, during the
evolutionary process in dCC, processors need to exchange infor-
mation in a set interval to ensure the cooperation among related
sub-populations. The interval reflects the cooperative frequency
among sub-populations. Researchers usually use a high cooperative
frequency to ensure performance. Theoretically, frequent commu-
nication among computing nodes will cause large cost of time and
computing resource. How to balance the communication and coop-
eration becomes an important issue in dCC[2].

This paper intends to study the influence of cooperative fre-
quency in dCC on different types of problems. We construct three
types of benchmark functions and a series of cooperative frequen-
cies are set for all constructed benchmark functions to conduct
experiments. Experimental results show that different problems
need different cooperative frequency to achieve a balance between
low resource consumption and good performance.

2 LARGE-SCALE GROUPING FUNCTIONS
In this work, to explore the effect of cooperative frequency on dif-
ferent kinds of optimization problems, we construct three kinds
of benchmark functions: fully separable, partially separable[6][7],
and overlapping. Four base functions 𝐸𝑙𝑙𝑖𝑝𝑡𝑖𝑐 , 𝑅𝑎𝑠𝑡𝑟𝑖𝑔𝑖𝑛, 𝑆𝑐ℎ𝑤𝑒 𝑓 𝑒𝑙
and 𝑅𝑜𝑠𝑒𝑛𝑏𝑟𝑜𝑐𝑘 are used to construct 14 benchmark functions[4].
Each function has 5 sub-components. F1-F2 are fully separable
functions and F3-F6 are partially separable functions. The con-
structed partially separable functions are separable globally but
non-separable locally. And the constructed overlapping functions
are ring-topology. F7-F10 are overlapping functions with consis-
tent overlaps and F11-F14 are overlapping functions with conflicted
overlaps. In overlapping functions, the overlapping size is set to 10.

3 EXPERIMENTS
Weuse themaster-slave[3] parallelingmodel to implement a dCC al-
gorithm in a synchronous way. In this work, CLPSO[8] is adopted as
an evolutionary optimizer. We use the single best collaborator selec-
tion strategy[5] to construct the context vector b = (𝑏1, ..., 𝑏𝑖 , ..., 𝑏𝑠 ),
where 𝑏𝑖 is the best individual from i-th sub-population and s is the
number of sub-components. In our experiments, after each commu-
nication, master node needs to gather recent best individuals from
all sub-populations to the context vector b and then send the new
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Table 1: Summary of Suitable Cooperative Frequency of Dif-
ferent Problems

Type of Function Suitable Cooperative Frequency

Fully separable Cooperate once in an evolution.
Partially separable Cooperate once in an evolution.

Fully separable The cooperative frequency should
not be too low or too high.

b to slave nodes. Slave nodes need to execute EAs and calculate the
fitness of individuals.

In these experiments, the maximum number of particles NP is
set to 100. As aforementioned, the number of sub-populations s
is 5. The maximum evolutionary generations maxG of each sub-
population is 6000 (𝑚𝑎𝑥𝐺 = 𝑀𝐴𝑋_𝐹𝐸𝑠/(𝑠 ∗ 𝑁𝑃)). To investigate
the effect of cooperative frequency in different benchmark func-
tions, we conduct experiments on constructed functions with a
set of cooperative frequency cf [1,2,6,12,60,120,600,6000]. The cf
means sub-populations cooperate cf times in an evolution. The
results will be discussed as following according to different types of
benchmark functions. Additionally, the data in all following figures
are the results obtained by taking the average of 30 independent
experiments.

1)Fully separable and partially separable: As shown in Fig.1(a) and
Fig.1(b), when the cooperative frequency is very high, performance
of fully separable and partially separable problems will be bad. If the
cooperative frequency is not too high, these two types of problems
can be optimized to the same level in any cooperative frequency.

In fully separable problems, all variables are independent of each
other. Theoretically, the cooperative frequency in dCC will not
affect the performance of fully separable problems. But most evo-
lutionary algorithms update particles by comparing fitness values
of two generations. Therefore, after each cooperation, each sub-
population must recalculate the fitness value of all particles to avoid
interference caused by the change of b. So, when the cooperative is
very high, a lot of evaluation times will be wasted. In partially sep-
arable, the variables in the sub-problems interact with each other,
but the sub-problems are still independent of each other. Due to
sub-problems will not disturb each other, partially separable do not
need any cooperation in dCC, too.

2)Overlapping: Overlapping functions need a moderate coop-
erative frequency to achieve a balance between performance and
resource consumption (shown in Fig.1(c)). For overlapping func-
tions, frequent cooperation will not only cause good sub-population
to be disturbed by other sub-populations, but also cause consump-
tion of computing resource. However, the overlapping problem
requires communication to ensure that the value of the overlap
is conducive to the complete problem. So, when optimizing over-
lapping functions, the frequency cannot be set too high or too
low.

4 CONCLUSION
In this paper, experiments are conducted to investigate the effect
of cooperative frequency in dCC. The results are summarized in
Table 1.
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Figure 1: Results of large-scale grouping functions in differ-
ent cooperative frequency.
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