
An Empirical Study of Cooperative Frequency in Distributed
Cooperative Co-evolution

Ling-Yu Li
South China University of Technology

Guangzhou, China

Wen-Jie Ou
South China University of Technology

Guangzhou, China

Xiao-Min Hu
Guangdong University of Technology

Guangzhou, China

Wei-Neng Chen
South China University of Technology

Guangzhou, China
cwnraul634@aliyun.com

An Song
South China University of Technology

Guangzhou, China

ABSTRACT
Cooperative co-evolution (CC) is an effective technique for opti-
mizing high dimensional problems. The scalability and efficiency of
CC can be further improved by combing with distributed comput-
ing, i.e., distributed CC (dCC). How to balance the cooperation and
communication among sub-problems is an important issue in dCC.
In this paper, we construct series of large-scale benchmark func-
tions, and conduct experimental studies to investigate the effect
of different cooperative frequency in dCC. Experiments suggest
that frequency of cooperation will not affect the performance of
fully separable and partially separable problems unless frequent
coordination among sub-populations consumes too many limited
computing resources. And overlapping problems need a moderate
cooperative frequency to get better performance.

CCS CONCEPTS
•Theory of computation→Design and analysis of algorithms;
Mathematical optimization; Continuous optimization;

KEYWORDS
Cooperative co-evolution, distributed computation, cooperative
frequency

ACM Reference Format:
Ling-Yu Li, Wen-Jie Ou, Xiao-Min Hu, Wei-Neng Chen, and An Song. 2021.
An Empirical Study of Cooperative Frequency in Distributed Cooperative
Co-evolution. In Proceedings of the Genetic and Evolutionary Computation
Conference 2021 (GECCO ’21). ACM, New York, NY, USA, 2 pages. https:
//doi.org/10.1145/3449726.3459501

1 INTRODUCTION
Distributed cooperative co-evolution(dCC) is an efficient technique
to optimize large-scale problems[1],[2]. In dCC, an optimization
problem is decomposed into several sub-components and these

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
GECCO ’21, July 10–14, 2021, Lille, France
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8351-6/21/07. . . $15.00
https://doi.org/10.1145/3449726.3459501

sub-components are handled by different processors. In most real-
world problems, the grouping strategy is difficult to achieve al-
most no interaction between the sub-problems. Thus, during the
evolutionary process in dCC, processors need to exchange infor-
mation in a set interval to ensure the cooperation among related
sub-populations. The interval reflects the cooperative frequency
among sub-populations. Researchers usually use a high cooperative
frequency to ensure performance. Theoretically, frequent commu-
nication among computing nodes will cause large cost of time and
computing resource. How to balance the communication and coop-
eration becomes an important issue in dCC[2].

This paper intends to study the influence of cooperative fre-
quency in dCC on different types of problems. We construct three
types of benchmark functions and a series of cooperative frequen-
cies are set for all constructed benchmark functions to conduct
experiments. Experimental results show that different problems
need different cooperative frequency to achieve a balance between
low resource consumption and good performance.

2 LARGE-SCALE GROUPING FUNCTIONS
In this work, to explore the effect of cooperative frequency on dif-
ferent kinds of optimization problems, we construct three kinds
of benchmark functions: fully separable, partially separable[6][7],
and overlapping. Four base functions 𝐸𝑙𝑙𝑖𝑝𝑡𝑖𝑐 , 𝑅𝑎𝑠𝑡𝑟𝑖𝑔𝑖𝑛, 𝑆𝑐ℎ𝑤𝑒 𝑓 𝑒𝑙
and 𝑅𝑜𝑠𝑒𝑛𝑏𝑟𝑜𝑐𝑘 are used to construct 14 benchmark functions[4].
Each function has 5 sub-components. F1-F2 are fully separable
functions and F3-F6 are partially separable functions. The con-
structed partially separable functions are separable globally but
non-separable locally. And the constructed overlapping functions
are ring-topology. F7-F10 are overlapping functions with consis-
tent overlaps and F11-F14 are overlapping functions with conflicted
overlaps. In overlapping functions, the overlapping size is set to 10.

3 EXPERIMENTS
Weuse themaster-slave[3] parallelingmodel to implement a dCC al-
gorithm in a synchronous way. In this work, CLPSO[8] is adopted as
an evolutionary optimizer. We use the single best collaborator selec-
tion strategy[5] to construct the context vector b = (𝑏1, ..., 𝑏𝑖 , ..., 𝑏𝑠),
where 𝑏𝑖 is the best individual from i-th sub-population and s is the
number of sub-components. In our experiments, after each commu-
nication, master node needs to gather recent best individuals from
all sub-populations to the context vector b and then send the new

203

https://doi.org/10.1145/3449726.3459501
https://doi.org/10.1145/3449726.3459501
https://doi.org/10.1145/3449726.3459501

GECCO ’21, July 10–14, 2021, Lille, France Ling-Yu Li, et al.

Table 1: Summary of Suitable Cooperative Frequency of Dif-
ferent Problems

Type of Function Suitable Cooperative Frequency

Fully separable Cooperate once in an evolution.
Partially separable Cooperate once in an evolution.

Fully separable The cooperative frequency should
not be too low or too high.

b to slave nodes. Slave nodes need to execute EAs and calculate the
fitness of individuals.

In these experiments, the maximum number of particles NP is
set to 100. As aforementioned, the number of sub-populations s
is 5. The maximum evolutionary generations maxG of each sub-
population is 6000 (𝑚𝑎𝑥𝐺 = 𝑀𝐴𝑋_𝐹𝐸𝑠/(𝑠 ∗ 𝑁𝑃)). To investigate
the effect of cooperative frequency in different benchmark func-
tions, we conduct experiments on constructed functions with a
set of cooperative frequency cf [1,2,6,12,60,120,600,6000]. The cf
means sub-populations cooperate cf times in an evolution. The
results will be discussed as following according to different types of
benchmark functions. Additionally, the data in all following figures
are the results obtained by taking the average of 30 independent
experiments.

1)Fully separable and partially separable: As shown in Fig.1(a) and
Fig.1(b), when the cooperative frequency is very high, performance
of fully separable and partially separable problems will be bad. If the
cooperative frequency is not too high, these two types of problems
can be optimized to the same level in any cooperative frequency.

In fully separable problems, all variables are independent of each
other. Theoretically, the cooperative frequency in dCC will not
affect the performance of fully separable problems. But most evo-
lutionary algorithms update particles by comparing fitness values
of two generations. Therefore, after each cooperation, each sub-
population must recalculate the fitness value of all particles to avoid
interference caused by the change of b. So, when the cooperative is
very high, a lot of evaluation times will be wasted. In partially sep-
arable, the variables in the sub-problems interact with each other,
but the sub-problems are still independent of each other. Due to
sub-problems will not disturb each other, partially separable do not
need any cooperation in dCC, too.

2)Overlapping: Overlapping functions need a moderate coop-
erative frequency to achieve a balance between performance and
resource consumption (shown in Fig.1(c)). For overlapping func-
tions, frequent cooperation will not only cause good sub-population
to be disturbed by other sub-populations, but also cause consump-
tion of computing resource. However, the overlapping problem
requires communication to ensure that the value of the overlap
is conducive to the complete problem. So, when optimizing over-
lapping functions, the frequency cannot be set too high or too
low.

4 CONCLUSION
In this paper, experiments are conducted to investigate the effect
of cooperative frequency in dCC. The results are summarized in
Table 1.

1 2 6 12 60 120 600 6000

cf (cooperative frequency)

10-4

10-2

100

102

104

g
b

e
s
t

Function 1

(a) Fully separable F1 .

1 2 6 12 60 120 600 6000

cf (cooperative frequency)

1000

1500

2000

2500

3000

3500

4000

g
b

e
s
t

Function 6

(b) Partially separable F6 .

1 2 6 12 60 120 600 6000

cf (cooperative frequency)

1.5

2

2.5

3

g
b

e
s
t

104 Function 8

(c) Overlapping F8 .

Figure 1: Results of large-scale grouping functions in differ-
ent cooperative frequency.

ACKNOWLEDGMENTS
This work was supported in part by the National Natural Science
Foundation of China under Grant 61772142, in part by the Pearl
River S&T Nova Program of Guangzhou No. 201806010059, and in
part by Natural Science Foundation of Guangdong No. 2019A15150-
11270. The research team was supported by the Guangdong-Hong
Kong Joint Innovative Platform of Big Data and Computational In-
telligence No. 2018B050502006, and the Guangdong Natural Science
Foundation Research Team No. 2018B030312003. (Corresponding
Author: Xiao-Min Hu)

REFERENCES
[1] Yue-Jiao Gong, Wei-Neng Chen, Zhi-Hui Zhan, Jun Zhang, Yun Li, Qingfu Zhang,

and Jing-Jing Li. 2015. Distributed evolutionary algorithms and their models:
A survey of the state-of-the-art. Applied Soft Computing 34 (2015), 286–300.
https://doi.org/10.1016/j.asoc.2015.04.061

[2] Y. Jia, W. Chen, T. Gu, H. Zhang, H. Yuan, S. Kwong, and J. Zhang. 2019. Distributed
Cooperative Co-Evolution With Adaptive Computing Resource Allocation for
Large Scale Optimization. IEEE Transactions on Evolutionary Computation 23, 2
(2019), 188–202. https://doi.org/10.1109/TEVC.2018.2817889

[3] X. Lei and F. Zhang. 2007. Parallel Particle Swarm Optimization for Attribute
Reduction. In Eighth Acis International Conference on Software Engineering.

[4] Xiaodong Li, Ke Tang, Mohammmad Nabi Omidvar, Zhenyu Yang, and Kai Qin.
2013. Benchmark Functions for the CEC’2013 Special Session and Competition on
Large-Scale Global Optimization. (01 2013).

[5] X. Li and X. Yao. 2012. Cooperatively Coevolving Particle Swarms for Large Scale
Optimization. IEEE Transactions on Evolutionary Computation 16, 2 (2012), 210–224.
https://doi.org/10.1109/TEVC.2011.2112662

[6] X. Ma, X. Li, Q. Zhang, K. Tang, Z. Liang, W. Xie, and Z. Zhu. 2019. A Survey
on Cooperative Co-Evolutionary Algorithms. IEEE Transactions on Evolutionary
Computation 23, 3 (2019), 421–441. https://doi.org/10.1109/TEVC.2018.2868770

[7] M. N. Omidvar, X. Li, Y. Mei, and X. Yao. 2014. Cooperative Co-EvolutionWith Dif-
ferential Grouping for Large Scale Optimization. IEEE Transactions on Evolutionary
Computation 18, 3 (2014), 378–393. https://doi.org/10.1109/TEVC.2013.2281543

[8] Q. Qin, S. Cheng, Q. Zhang, L. Li, and Y. Shi. 2016. Particle Swarm Optimization
With Interswarm Interactive Learning Strategy. IEEE Transactions on Cybernetics
46, 10 (2016), 2238–2251. https://doi.org/10.1109/TCYB.2015.2474153

204

https://doi.org/10.1016/j.asoc.2015.04.061
https://doi.org/10.1109/TEVC.2018.2817889
https://doi.org/10.1109/TEVC.2011.2112662
https://doi.org/10.1109/TEVC.2018.2868770
https://doi.org/10.1109/TEVC.2013.2281543
https://doi.org/10.1109/TCYB.2015.2474153

	Abstract
	1 Introduction
	2 Large-Scale Grouping Functions
	3 Experiments
	4 Conclusion
	Acknowledgments
	References

