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ABSTRACT
This paper presents a framework for systematically investigating
and designing fuzzy rulesets for Adaptive Fuzzy Particle Swarm
Optimization (AFPSO) algorithms. Training is achieved through
Gaussian Process (GP) supported by Gradient Boosted Regression
Trees (GBRT). Meta-objective was defined by ranks on various
benchmark functions. Validation benchmarks were also performed
on GECCO ’20 bound-constrained optimization competition. The
resulting variants, particularly those controlling hybridization with
Quantum Particle Swarm Optimization (QPSO) surpassed classical
Particle Swarm Optimization (PSO), Genetic Algorithm (GA) and
Differential Evolution (DE) on the training functions. Some level of
generalization was also observed on most of the validation set.
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1 MOTIVATION
Research shows that controlling the parameters during the opti-
mization process can improve performance. For example, in PSO,
AFPSO variants are proposed[5]. However, design of the controller
remains manual. We propose a framework using meta heuristic
optimization for the design of fuzzy rulesets. An automated setup
allows effortless adaptation of an algorithm to a set of problems.
We also pursue a reasonable level of generalization or robustness.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
GECCO ’21 Companion, July 10–14, 2021, Lille, France
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8351-6/21/07.
https://doi.org/10.1145/3449726.3459418

2 CONCEPTS AND TECHNIQUES
Our AFPSO algorithm includes a Fuzzy Inference Engine (FIE) prob-
ing three variables from the optimization process and turning them
into various parameters. At a conceptual level, it integrates mostly
like the objective function evaluation, as illustrated in Figure 1.
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Figure 1: Fuzzy inference engine integration.

2.1 Particle Swarm Optimization
Our framework is a plug-in that could be used along any set of popu-
lation heuristic with meta-parameters or existing AFPSO. We chose
to work with the PSO paradigm given its popularity, robustness
and simplicity. The original PSO was adapted from Craig Reynolds’
boïds simulation by Kennedy and Russel Eberhart in 1995[1].

The swarm in PSO for bound-constrained, single objective min-
imization is a collection of 𝑆 agents possessing a position in the
search space, relationships with other agents and a cost. Particles
also store in memory their best known position and its associated
cost.

The update equations behind PSO are pretty straightforward:
particles’ positions are simply incremented by their speed at each
iteration 𝑡 .

The search mechanism lies in the definition of the speed in which
the particle is attracted by two weighted attractors or known points:
the agent’s own best memory, with factor 𝑟1𝑐1 and the agent’s
best friend’s best memory, with factor 𝑟2𝑐2. 𝑟1 and 𝑟2 are random
variables sampled from a uniform distribution in [0, 1], giving

𝑣𝑖 |𝑡+1= 𝑟1𝑐1 (𝑚𝑖 |𝑡 −𝑥𝑖 |𝑡 ) + 𝑟2𝑐2
(
𝑚𝑏𝑖 |𝑡 −𝑥𝑖 |𝑡

)
+ 𝜔𝑣𝑖 |𝑡 .

While used separately, the two attractors allow for exploitation, lo-
cally or globally. Their interaction employs the information shared
among the swarm to better explore the search space. The last
term implements inertia from [2] by basing the current speed on a
fraction 𝜔 of its previous value.

In the following, we refer to hybridization, which was achieved
using QPSO[3] rather than PSO with probability ℎ.
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Table 1: Definition of noteworthy fuzzy variables

Name Symbol Low Med. High

Evals. Budget 𝜏 0.2 0.4 0.6
Proximity to b.f. 𝛿 0.3 0.5 0.8
Improvement 𝜙 -1.0 0.0 1.0
Inertia 𝜔 0.3 0.7 0.9
Hybridization ℎ 0.0 0.5 1.0
Lowest speed thr. 𝑙 0.0 0.005 0.01
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Figure 2: Efficiency of the different prototypes (pairs of con-
trolled parameters). The meta-objective is represented using
power-law normalization (𝛾 = 8)

2.2 Fuzzy inference engine
A feedback engine design uses the variables described in Table 1,
binding probes 𝜏 , 𝛿 , 𝜙 to parameters 𝜔 , ℎ and 𝑙 of PSO. Parameter 𝑙
controls the minimal speed threshold. To preserve the simplicity
and speed of PSO, we designed simple probes that are evaluated
quickly. Initial definition was inspired by [5]. Probe 𝜏 measures
the consumption of function evaluations and probe 𝛿 the distance
from the agent to its best friend. Finally, probe 𝜙 measures the rank
improvement of the agent among the swarm.

A GBRT assisted GP evolves the best design using 100 meta-
objective evaluations for a given pair of parameters, the prototype
and a benchmark. The meta-objective represents performance of an
optimizer on 14 functions in 50 dimensions with 40e3 evaluations of
the function shared by 40 agents. Functions are presented multiple
times to the optimizer with transformations during training. Fig-
ure 2 indicates the three best combinations by their rank: 𝜔&ℎ(1),
ℎ(2) and ℎ&𝑙 (3). Performance on those training functions is shown
in Table 2 for the best prototypes of Figure 2 with an increased
population size 𝑆 . These rank show some robustness in the slightly
different(𝑆 = 80) benchmark in Table 2.

3 RESULTS & CONCLUSIONS
We investigated the simultaneous control of two or more parame-
ters. The performance for pairs of parameters are shown in Figure
2. Controlling the hybridization has a great and positive impact on
performance.

We also assessed the generalization capability of the method on
the GECCO’20 benchmark[4]. Results are briefly summarized in
Table 3.

Table 2: Comparison between themean results for our bench-
mark functions in 50 dimensions (S=80).

Func. PSO 𝜔&ℎ(1) ℎ(2) ℎ&𝑙 (3)

Sphere 5.28e−2 0.00 0.00 0.00
Ackley 6.48 0.00 0.00 2.28e−3
Rastr. 1.45e2 0.00 2.00 7.32
Rosen. 9.24e1 4.59e1 4.70e1 4.70e1
Stibl. 2.68e2 1.64e2 1.02e2 3.71e2
Schwef. 1.02e4 8.93e3 1.29e4 9.71e3
Chung 1.07 0.00 0.00 8.24e−7
Griew. 7.24e8 0.00 0.00 1.59e−5
Qing 4.98e7 3.68e3 3.59e3 6.18e2
Salom. 5.90e−1 3.54e−1 5.36e−1 5.91e−1
Hap. Cat 1.44 9.99e−2 1.20e−1 1.80e−1
Xin-Sh1 1.43e10 7.94e9 9.87e9 1.15e10
Xin-Sh2 0.00 0.00 0.00 0.00
Bnt.Cig. 9.86e9 0.00 0.00 1.38e3

Table 3: Comparison between the mean results on the
GECCO’20 benchmark functions in 20 dimensions (S=80).

Func. PSO 𝜔&ℎ(1) ℎ(2) ℎ&𝑙 (3)

0 4.67e6 0.00 0.00 2.59e2
1 1.64e3 3.35e2 9.06e2 2.22e3
2 4.20e1 3.68e1 2.63e1 3.75e1
3 2.69 1.59 1.33 1.76
4 3.75e2 3.77e2 5.45 5.75e1
5 2.77e1 6.85 3.69 2.64e1
6 9.93 2.27e2 2.85 3.73e1
7 1.14e2 1.03e2 1.02e2 1.00e2
8 4.07e2 4.14e2 4.06e2 4.09e2
9 4.50e2 4.26e2 4.14e2 4.14e2

In this setup, the algorithm was far from its training conditions
in terms of number of variables, agents and function evaluations but
still managed to provide overall improvement to PSO, particularly
the prototype based on the single control parameter ℎ.
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