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ABSTRACT
Algorithms for black-box optimization need considering numer-
ous properties of objective functions in advance. The covariance
matrix adaptation evolution strategy (CMA-ES) is known as one
of the state-of-the-art algorithms for black-box optimization. De-
spite its achievement, the CMA-ES fails to minimize the objec-
tive function which is high-dimensional and ill-conditioned such
as 100,000-dimensional Ellipsoid function. This fact is a serious
problem to apply the CMA-ES to recent high-dimensional machine
learningmodels.We confirm that the “single” step-size for all coor-
dinates is one of the hindrances to the adaptation of the variance-
covariance matrix. To solve this, we propose a CMA-ES with coor-
dinate selection. Coordinate selection enables us to vectorize the
step-size and adapt each component of the vector to the scale of
selected coordinates. Furthermore, coordinate selection based on
estimated curvature reduces the condition number during updat-
ing variables in selected coordinate space. Our method is enough
simple to easily apply to most of variations of CMA-ES: only exe-
cute conventional algorithms in the selected coordinate space. The
experimental results show that our method applied to the CMA-
ES, the sep-CMA-ES and the VD-CMA outperforms the conven-
tional variations of CMA-ES in terms of function evaluations and
an objective value in the optimization of high-dimensional and ill-
conditioned functions.
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1 INTRODUCTION
Handling high-dimensional problems is challenging even for the
covariance matrix adaptation evolution strategy (CMA-ES) [2],
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which is a state-of-the-art algorithm for black-box optimization,
because of its time and space complexities. To deal with this, the
sep-CMA-ES [5] limits a covariance matrix to the diagonal com-
ponents and reduces the complexities. However, Loshchilov [4]
pointed out that the sep-CMA-ES did not sufficiently decrease the
value of the 100, 000-dimensional ellipsoid function even after 106
function evaluations.

Therefore, we propose a CMA-ES with coordinate selection to
reduce the condition number and adapt the vectorized step-size to
the scale of each coordinate of an objective function. We used our
algorithm for several variations of CMA-ES and determined that
ourmethod is superior to a conventional CMA-ES in terms of func-
tion evaluations that reach optimal value for high-dimensional and
ill-conditioned functions.

2 CMA-ES WITH COORDINATE SELECTION
The condition number, which indicates the ill-conditionality of an
objective function, is determined by a ratio of max. andmin. eigen-
values of the Hessian of the objective function. Our method only
updates the parameters in the selected coordinate space at each
generation and regards the variables in the coordinates that are
not selected as numerical constants. Therefore, the condition num-
ber at each generation is recalculated from the selected coordi-
nate space. The original condition number is 106 for the 100, 000-
dimensional ellipsoid function. The expected value of the condi-
tion number in randomly selected 100-coordinates’ space is ap-
proximately 7.7×105 which is about 25% less than the original one.
To further reduce the condition number, we propose curvature-
based coordinate selection that selects coordinates based on the
estimated curvature of each coordinate of the function.

To vectorize the step-size is not useful for conventional CMA-
ES because the updater of the step-size is a scalar value for all el-
ements. However, a set of the elements of the vectorized step-size
is changed at each generations in our method. Thus, each element
is updated to adapt to the scale of each coordinate.

The overall algorithm to minimize an objective function 𝑓 (𝒙) ∈
R, 𝒙 ∈ R𝑑 is as follows. To begin, the mean vector 𝒎 (0) ∈ R𝑑 ,
the covariance matrix 𝑪 (0) ∈ R𝑑×𝑑 , and the vectorized step-size
𝝈 (0) ∈ R𝑛 are determined based on the search region, and the
evolution paths of the covariance matrix and the step-size are ini-
tialized as 𝒑 (0)𝒄 ∈ R𝑑 and 𝒑 (0)𝝈 ∈ R𝑑 = 0. Next, we introduce an
index vector 𝜾 ∈ R𝑑 = [0, 1, ..., 𝑑 − 1] as the length of the input
dimensions of 𝑓 (𝑥) and 𝑒 ∈ R (initially 𝑒 = 0) as the end point
of the selected vector. The number of dimensions to be selected in
each iteration is 𝑠 ∈ R. Then, we repeat the following steps until
the predetermined termination conditions are met.

[Step 1] From 𝜾, we take the elements from 𝜄𝑒 to 𝜄𝑒+𝑠 and let
them be the index vector 𝜾′ ∈ R𝑠 in the current generation. Then,
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(a) 100,000-D Sphere,
𝑓𝑠𝑝ℎ (𝒙 )=

∑𝑑
𝑖=1 𝑥
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(b) 100,000-D Ellipsoid,
𝑓𝑒𝑙𝑙 (𝒙 )=

∑𝑑
𝑖=1 (1000

(𝑖−1)/(𝑑−1)𝑥𝑖 )2
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(c) 10,000-D Rotated ellipsoid,
𝑓𝑒𝑙𝑙𝑟𝑜𝑡 (𝒙 )=𝑓𝑒𝑙𝑙 (𝑹𝒙 )

Figure 1: Convergence of each function. 𝑅 is a 𝑑 × 𝑑 orthogonal matrix generated randomly.

we assign 𝑒 +𝑠 as the new 𝑒 . For 𝑒 > 𝑑 −1, we reorder the elements
of 𝜾 based on the estimated curvature 𝜿 (see [Step 7]) and 𝑒 ← 0.

[Step 2] Based on the generated current generation index vec-
tor 𝜾′, we generate a sub-vector and a sub-matrix from each vari-
able: the mean sub-vector 𝒎′ ∈ R𝑠 , the covariance sub-matrix
𝑪 ′ ∈ R𝑠×𝑠 , the step-size sub-vector 𝝈 ′ ∈ R𝑠 , and the evolution
path sub-vectors 𝒑′

𝒄 ∈ R𝑠 and 𝒑′
𝝈 ∈ R𝑠 .

[Step 3] We sample 𝜆 individuals 𝒙 ′(𝑡 ) ∈ R𝜆×𝑑 from a multi-
variate normal distribution as 𝒛′(𝑡 ) ∼ N(0, 𝑰 ),𝒚′(𝑡 ) = 𝒛′(𝑡 )

√
𝑪 ′(𝑡 ) ,

𝑥
′(𝑡 )
𝑖 =

{
𝑚
(𝑡 )
𝑖 + 𝜎

′(𝑡 )
𝑖 𝑦

′(𝑡 )
𝑖 𝑖 𝑓 𝑖 ∈ 𝜾′

𝑚
(𝑡 )
𝑖 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

.

𝒙 ′(𝑡 ) is a matrix of the same dimension as the normal CMA-ES here
and takes same value of 𝒎 (𝑡 ) for all the dimensions except for 𝜾′.

[Step 4] As with the normal CMA-ES, each individual is eval-
uated and ranked by the objective function, then we compute the
weighted sum as 𝒅𝒚′(𝑡 ) =

∑𝜆
𝑖 𝑤𝑖𝒚

′(𝑡 )
𝒊 , 𝒅𝒛′(𝑡 ) =

∑𝜆
𝑖 𝑤𝑖𝒛

′(𝑡 )
𝒊 .

[Step 5] We update the evolution paths ℎ
(𝑡+1)
𝜎 , 𝒑′(𝑡+1)

𝝈 and
𝒑′(𝑡+1)
𝒄 the same as normal CMA-ES. The elements specified by

𝜾′ are updated here, and the other elements are not updated.
[Step 6]We update𝒎 (𝑡 ) , 𝑪 (𝑡 ) , and 𝝈 (𝑡 ) based on the evolution

path. As in [Step 5], we only update the elements specified by 𝜾′,
and we keep the original values of the other elements.

[Step 7] We estimate the curvature of the objective function
as follows. First, we initialize 𝜹𝒑 = [0.0001, ..., 0.0001]𝑠 as a small
stride. Then, we adjust to adapt to the scale of each coordinate as
𝜹𝒒 = 𝝈 ′𝜹𝒑

√
𝑪 ′. Finally, we estimate the first-order derivatives 𝒅1,

second-order derivatives 𝒅2, and curvature 𝜿 as

𝒅1 =
𝑓 (𝒎 + 𝜹𝒒) − 𝑓 (𝒎 − 𝜹𝒒)

2 ∗ 𝜹𝒒 ,

𝒅2 =
𝑓 (𝒎 + 𝜹𝒒) − 2𝑓 (𝒎) + 𝑓 (𝒎 − 𝜹𝒒)

𝜹𝒒2
, 𝜿 =

|𝒅2 |
(1 + 𝒅21)

3
2
.

3 EXPERIMENT
We used the values given in the paper [3] for the hyperparameters.
We used our curvature-based coordinate selection and random-
based coordinate selection (reorder 𝜾 randomly in [step 1]) meth-
ods for the sep-CMA-ES and the VD-CMA [1] (Our methods are

“Curvature” and “Random” in figure 1). As in the study [4], the
initial values were set to 𝒎 (0) = 𝑈 (−5, 5), 𝑪 (0) = 𝑰 , 𝜎 (0) = 1.0
(𝝈 (0) = [1.0, ..., 1.0]𝑑 for our CMA-ES), and 𝜆 = 4 + 3⌊ln (𝑑)⌋.
The target value of the objective function and the max. number of
function evaluations were set to 10−10 and 𝜆 × 107. The number of
coordinates selected at each generation was set to 𝑠 = 100.

Figure 1 (b) and (c) show that our algorithms reached a bet-
ter solution in fewer function evaluations than the conventional
CMA-ES for ill-conditioned functions, ellipsoid and rotated ellip-
soid. However, figure 1 (a) shows that slightly more function eval-
uations reached the target value for the sphere function compared
with the conventional CMA-ES. Coordinate selection limits the
number of coordinates updated during a single iteration, degrad-
ing the performance of the well-conditioned function.

4 CONCLUSION AND FUTUREWORK
We proposed a CMA-ES with coordinate selection to reduce the
condition number and adapt the vectorized step-size to the scale of
each coordinate of an objective function. We used our method for
several variations of CMA-ES and improved the performance of the
optimization of high-dimensional and ill-conditioned functions. It
is truly important for our method how we select coordinates. If
we determined the number of selection dynamically (contrast to
our current method 𝑠 = 100), the performance of well-conditioned
functions could be improved.
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