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ABSTRACT
For several real-world optimization problems, the evaluation of re-
sponse functions may be expensive, computationally or otherwise.
The number of design evaluations one can afford for such problems
are therefore severely limited. Surrogate models are commonly used
to guide the search for such computationally expensive optimization
problems (CEOP). The surrogate models built using a limited num-
ber of true evaluations are used to identify the next infill/sampling
location. Expected improvement (EI) is a well known infill cri-
teria which balances exploration and exploitation by accounting
for both mean and uncertainties in the current model. However,
recent studies have shown that, somewhat counter-intuitively, a
greedy (“believer”) strategy can compete well with EI in solving
CEOPs. In this study, we are interested in examining the relative
performance of the two infill methods across a range of problems,
and identify the influencing factors affecting their performance.
Based on the empirical analysis, we further propose an algorithm
incorporating the strengths of the two strategies. The numerical
experiments demonstrate that the proposed algorithm is able to
achieve a competitive performance across a range of problems with
diverse characteristics; making it a strong candidate for solving
black-box CEOPs.
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1 INTRODUCTION
Surrogate assisted optimization (SAO) is commonly adopted for
solving CEOPs. A widely used infill criterion is expected improve-
ment (EI) maximization. Its advantage lies in overcoming local
optimum and global convergence. However, recent studies, includ-
ing [4] show that, counter-intuitively, Kriging believer (KB) infill
criterion can outperform EI strategy in certain scenarios. In this
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paper, we conduct numerical experiments on problems with diverse
features in a controlled setting to provide further insights on the
relative performance of KB and EI. Based on the above analysis, we
propose a hybrid optimization algorithm that can act as a bridge
between the conventional KB and EI infill criteria and combine
their strengths. The key aim is to generate competitive (though not
necessarily the best) performance across problems with different
features without prior knowledge of modality, so that the algorithm
can be more confidently applied to unseen cases.

2 MOTIVATING OBSERVATIONS
As mentioned previously, KB has shown competitive performance
even for some multimodal problems [4]. By comparing the princi-
ples of these two strategies, we infer that global structure of the
objective landscape could be one of the major factors that offer
advantages to the KB strategy. The presence of a global structure
refers to the functions where optimum of the low-fidelity models
based on relatively sparse sampling lies close to the global optimum,
a representative example being the Rastrigin function. In such land-
scapes, even with multimodality, KB still can quickly locate global
optimum. However, without the presence of global structure, KB
can get stuck in local optimum, while EI is able to perform better
on account of its relatively higher tendency to sample in uncertain
regions to improve the global model, for example in the case of
Shekel function. In order to combine the strengths of these two infill
criteria, we intend to identify promising regions based on currently
evaluated solutions, and would like to supplement the EI search by
additional, concentrated sampling using KB in these regions. We
propose to identify these promising regions approximately using a
data analysis technique called bump hunting [2].

3 PROPOSED APPROACH
The pseudo-code of the proposed algorithm, referred to as bump
hunting assisted expected improvement based optimizer (BHEI),
is presented in Algo. 1. BHEI for the most part operates on EI
strategy, but incorporates a localized KB sampling periodically to
overcome its above-mentioned shortcomings compared to KB. We
set a frequency parameter 𝛿 to control the activation of local search.
Every 𝛿 iterations, the local search is invoked to identify a promising
region 𝑅𝐿 with BH. BH extracts a series of candidate boxes from
𝐴, which stores all truly evaluated solutions. These boxes follow
ascending order in terms of the average 𝑓 value of enclosed points.
To construct the local region, we start from the first box as a base
local region, and increasingly add more boxes until the number of
enclosed points reaches 2(𝑑 +1), including the current best solution
in𝐴. Within this promising region 𝑅𝐿 , KB infill search is conducted
to identify the local minimum point x𝑘

𝑖𝑛𝑓 𝑖𝑙𝑙
and its true objective
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Algorithm 1 The proposed BHEI algorithm
Input: Max. number of function evaluations 𝐹𝐸𝑚𝑎𝑥 , Initial sample size 𝑛,
frequency parameter 𝛿 , design variable dimensionality 𝑑
Output: Best solution x∗ and 𝑓 ∗

1: Sample 𝑛 instances of x as x𝑛
2: Obtain their corresponding 𝑓𝑛 values through true evaluations
3: Build kriging model 𝐷 that maps x to 𝑓 with GP.
4: Initialize archives 𝐴← {x𝑛, 𝑓𝑛 }, Update 𝐹𝐸
5: while (𝐹𝐸 < 𝐹𝐸𝑚𝑎𝑥 ) do
6: Use EI criterion to search for a next infill point 𝑥𝑒

𝑖𝑛𝑓 𝑖𝑙𝑙

7: Evaluate x𝑒
𝑖𝑛𝑓 𝑖𝑙𝑙

to obtain 𝑓 𝑒
𝑖𝑛𝑓 𝑖𝑙𝑙

and update archives
8: 𝐴← {x𝑒

𝑖𝑛𝑓 𝑖𝑙𝑙
, 𝑓 𝑒
𝑖𝑛𝑓 𝑖𝑙𝑙

} and FE
9: Filter out close solutions from 𝐴 based on 𝜖

10: if ((𝐹𝐸 − 𝑛) 𝑚𝑜𝑑 𝛿) == 0 then
11: Apply BH on 𝐴

12: Identify best solution x𝑚𝑖𝑛
𝑎𝑟𝑐 from 𝐴

13: Increasingly merge BH returned boxes, till both x𝑚𝑖𝑛
𝑎𝑟𝑐

14: is included and enclosed point size is greater than or
15: equal to 2(𝑑 + 1)
16: Extract training points from 𝐴 within above
17: identified local region 𝑅𝑙𝑜𝑐𝑎𝑙
18: Build a local surrogate 𝐷𝑙𝑜𝑐𝑎𝑙 .
19: Apply KB infill search on 𝐷𝑙𝑜𝑐𝑎𝑙 bounded by 𝑅𝑙𝑜𝑐𝑎𝑙
20: identify an infill point x𝑘

𝑖𝑛𝑓 𝑖𝑙𝑙

21: Evaluate x𝑘
𝑖𝑛𝑓 𝑖𝑙𝑙

to get 𝑓 𝑘
𝑖𝑛𝑓 𝑖𝑙𝑙

22: Update archive 𝐴← {x𝑘
𝑖𝑛𝑓 𝑖𝑙𝑙

, 𝑓 𝑘
𝑖𝑛𝑓 𝑖𝑙𝑙

} and 𝐹𝐸

23: Filter out close solutions from 𝐴 based on 𝜖

24: end if
25: Update kriging model 𝐷 with archive 𝐴
26: end while
27: Report the best solution x∗ and 𝑓 ∗ from 𝐴

value 𝑓 𝑘
𝑖𝑛𝑓 𝑖𝑙𝑙

. When evaluation budget is exhausted, best solution in
𝐴 is returned. An ill-conditioning check is done on 𝐴 while adding
any new truly evaluated solution using a tolerance 𝜖 = 1𝑒 − 6.

4 NUMERICAL EXPERIMENTS
For experiments, we select 16 problems with different features. The
number of initial samples generated using latin hypercube sampling
are set as 11 × 𝑑 − 1, where 𝑑 = 3 is the number of design variables.
Total budget for evaluation is set to 200. Table 1 lists the results of
median runs of three different algorithms. The symbols U and M
refer to unimodal and multimodal, respectively. 𝑠 and𝑤 refers to
strong and weak modality, respectively, while 𝑠𝐺 and𝑤𝐺 refer to
strong and weak global structure, respectively. The symbols ↓, ↑
and ≈ refer to the former algorithm performs significantly worse,
better or equivalent compared to the latter algorithm.

In the EI 𝑣𝑠 KB column (middle column), it can be seen that
for unimodal problems, KB performs either significantly better or
similar to EI. For multimodal problems, there are mixed results,
with a subset where KB outperforms EI and vice-versa. These em-
pirical results clearly show that KB and EI have their niches and
outperform each other on different sets. The median results using
BHEI, as well as the statistical significance tests w.r.t. KB and EI are
summarized in the first and third columns. It can be seen that BHEI
shows the best overall performance among the three algorithms. It
performs better or equal to EI for 9 and 7 instances, respectively,

Problem Features KB (𝑣𝑠 BHEI) EI (𝑣𝑠 KB) BHEI (𝑣𝑠 EI)
1. SMD1L [5] U 0.7264 ↓ 0.5987≈ 0.0099 ↑
2. SMD2L [5] U 0.0005 ≈ 0.0396 ↓ 0.0011 ↑
3. Rosenbrock [6] U 4.9507≈ 12.6930 ↓ 3.5501 ↑
4. Zakharov [6] U 6.6152 ↓ 5.6808≈ 0.2716 ↑
5. Levy [6] M (s, sG) 0.0109 ≈ 0.2083↓ 0.0032 ↑
6. Ackley [6] M (s, sG) 0.0541 ↓ 0.1771↓ 0.0185 ↑
7. SMD3L [5] M (w, sG) 1.7907↓ 2.743≈ 0.9618 ↑
8. SMD4L [5] M (w, sG) 0 ↑ 0.5168↓ 0.0000 ↑
9. DSm [1] M (w, sG) 0.1094 ≈ 0.2329 ≈ 0.0735 ↑
10. TP7 [3] M (w, wG) -2.0430≈ -2.5343 ≈ -2.2724 ≈
11. Shekel [6] M (s, wG) -3.0542↓ -10.7160↑ -10.5560≈
12. TP9 [3] M (w, wG) -3.6336 ≈ -4.3538 ≈ -4.3568≈
13.TP3 [3] M (s, wG) -2.6326 ≈ -2.8233 ≈ -2.7144 ≈
14. TP6 [3] M (s, wG) -3.4708↓ -3.7886 ≈ -3.9918 ≈
15. Rastrigin [6] M (s, sG) 4.9748↓ 2.0182 ↑ 2.0132 ≈
16. TP5 [3] M (s, sG) -1.6000 ≈ -1.6940 ↑ -1.6587≈

Table 1: Test problems and results.

while compared to KB the numbers are 7 and 8, respectively. It can
be inferred that BHEI is a more reliable algorithm than either KB
and EI.

5 CONCLUSION AND FUTUREWORK
In this paper, we analyzed KB’s competitive performance despite
theoretical advantages of EI, particularly underlying problem fea-
tures that result in these observations. We then proposed a hybrid
algorithm BHEI that combines the strengths of KB and EI. Experi-
mental results on a range of problems show that the proposed BHEI
has competitive and reliable performance across diverse problem
characteristics.

APPENDIX
DSm problem is modified from the lower level DS test problem [1].

min 𝑓 (x) =
𝑘∑
𝑖=1

x2𝑖 +
𝑘∑
𝑖=2

10 × | sin( 𝜋
𝑘
𝑥𝑖 ) |;−𝑘 ≤ x𝑖 ≤ 𝑘, 𝑖 ∈ {1, ..., 𝑘 }

(1)
The SMD problems used in this study are bilevel problems [5].

We only use their lower level problems. For all four SMD problems,
their upper level variable x𝑢 is fixed to be x𝑢 = [0, 0].
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