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ABSTRACT
When designing a benchmark problem set, it is important to create
a set of benchmark problems that are a good generalization of the
set of all possible problems. One possible way of easing this difficult
task is by using artificially generated problems. In this paper, one
such single-objective continuous problem generation approach is
analyzed and compared with the COCO benchmark problem set, a
well know problem set for benchmarking numerical optimization
algorithms. Using Exploratory Landscape Analysis and Singular
Value Decomposition, we show that such representations allow us
to further explore the relations between the problems by applying
visualization and correlation analysis techniques, with the goal of
decreasing the bias in benchmark problem assessment.

CCS CONCEPTS
• Computing methodologies → Continuous space search; •
Human-centered computing → Empirical studies in visualiza-
tion;
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1 INTRODUCTION
The first step to creating a good benchmarking environment is to
select a good set of benchmark problems. Ideally, a well designed
problem set would be representative of the entire set of problems
that the benchmark aims to estimate the performance of. For a
benchmark set that aims to determine a general performance of a
given algorithm, this would mean that the benchmark problems
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should be evenly distributed over the space of all possible problems
that this algorithm will be solving. However, it can be hard to
determine what the actual possible problem space even is, and if
benchmark problems are created by hand, it can be difficult to create
a large enough number of varied benchmark problems to cover the
entire problem space.

In this paper, we attempt to ease this task by using an artificial
problem generator developed by Tian et al. in [6], and compare
these problems to the 24 noiseless benchmark problems of the
well known COCO [2] benchmarking platform (COCO problems).
The goal of this paper is to gain further knowledge on the COCO
problems by analyzing whether and how the artificially generated
problems complement the COCO problems. Or if the alternative is
true, and these two sets of problems instead form a single group of
problems. We perform this analysis using Exploratory Landscape
Analysis (ELA), a methodology that allows us to describe problems
using numerical descriptors called landscape features.

In this paper, we built upon our prior work described in [7]
and [1]. In addition, we employ a benchmark problem generator
described in [6]. The work presented in this poster is similar to
several existing papers, primarily [4, 5], but uses a different prob-
lem generation approach, as well as a different methodology for
visualizing problems.

2 METHODOLOGY
Our methodology can broadly be split into four steps: the problem
selection (including generation), ELA feature calculation, Singular
Value Decomposition (SVD) mapping, and finally the complemen-
tarity analysis of the resulting SVD representations.

In the first step, we select the problems used for our analysis.
The two problem sets used are the 24 noiseless COCO problems
[3], and the set of 500 artificially generated problems using the
method described in [6]. The problems are generated using the
dimensionality 𝐷 = 10, and are calculated using a sample size of
200𝐷 .

In the second step, we use ELA to calculate the landscape features
that will be used to compare the problems from the two problem
sets. The landscape features used are the same as in [7].

In the third step, these landscape features are scaled to values
between 0 and 1 using min-max scaling and then transformed
into a subspace using SVD as described in [1] in order to improve
the reliability of our results. The values for the COCO and the
generated problems are transformed separately. The values of one
set are then projected to the SVD subspace of the other. We use
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three different projection methods: projecting the COCO problems
into the SVD subspace of the generated problems, projecting the
generated problems into the SVD subspace of the COCO problems,
and calculating the SVD representation of both the COCO and
generated problems together without projections.

In the fourth step, we use the SVD problem representations
obtained in the third step to analyze the complementarity of the
two problem sets. To accomplish this, we visualize the benchmark
problems in a 2D space using t-SNE as described in [7] and perform
Pearson correlation analysis.

3 RESULTS
Figure 1 shows the results of projecting the 24 COCO problems into
the space of the 500 generated problems. We can see that the COCO
problems do not cover the entire space of the generated problems.
In particular, there is a large cluster of COCO problems at the left
of the visualization that is distinct from the generated problems,
as well as a smaller cluster at the right. The other two projection
methods types showed similar results.

Figure 1: A t-SNE visualization of projecting the set of gen-
erated problems (black) into the SVD subspace of the set of
COCOproblems (red). TheCOCOproblems are distinct from
the generated problems.

Figure 2 shows the results of the Pearson correlation analysis.
The thickness of the edges shows how correlated a pair of problems
are, and its color shows whether the correlation is positive (blue) or
negative (red). We can see that the two sets of problems are visually
distinct from one another.

4 DISCUSSION & CONCLUSIONS
In this paper, we presented the results of a complementary anal-
ysis between the commonly used COCO benchmark set and the
problems generated by an artificial problem generator.

The foremost conclusion drawn from this paper is that, as far as
ELA landscape features are concerned, the 24 COCO benchmark
problems represent only a small subset of all possible optimization
problems. We believe this is an important realization both for the
field of benchmarking (in order to reduce bias analysis in perfor-
mance assessment), as well as for the field of Exploratory Landscape
Analysis. For the field of benchmarking, this paper gives an idea
of how problem generation combined with ELA can be used to

augment existing benchmark problems. Regarding ELA, we believe
these results show that only using traditional benchmark sets such

Figure 2: Pearson correlation between the generated prob-
lems (black) and the COCO problems (red), after the gener-
ated problems have been projected to the SVD subspace of
the COCO problems.

as the 24 COCO benchmark problems might not be enough for a
thorough evaluation of these landscape features, and that additional
problems should be used.

This paper also presents opportunities for future work. One
way to extend this work would be by including additional bench-
mark sets, for example the CEC benchmark problem set. Another
possible way of extending our work is the inclusion of algorithm
performance metrics by examining how ELA features correlate
with algorithm performance.
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