
A Genetic Algorithm Approach to Compute Mixed Strategy
Solutions for General Stackelberg Games

Srivathsa Gottipati, Praveen Paruchuri
International Institute of Information Technology, Hyderabad, India

srivathsa.gottipati@research.iiit.ac.in,praveen.p@iiit.ac.in

ABSTRACT
Stackelberg games have found a role in a number of applications
including modeling market competition, identifying traffic equilib-
rium, developing practical security applications and many others.
While a number of solution approaches have been developed for
these games in a variety of contexts that use mathematical opti-
mization, analytical analysis or heuristic based solutions, literature
has been quite sparse on the usage of Genetic Algorithm (GA) based
techniques. In this paper, we develop a GA based solution to com-
pute high quality mixed strategy solution for the leader to commit
to, in a General Stackelberg Game (GSG). Our experiments show-
case that the GA solution developed here indeed performs well in
terms of scalability and provides reasonably good solution quality
in terms of the average reward obtained.

CCS CONCEPTS
• Computing methodologies → Genetic algorithms;

KEYWORDS
Stackelberg games,Mixed strategy, Genetic algorithms
ACM Reference Format:
Srivathsa Gottipati, Praveen Paruchuri. 2021. A Genetic Algorithm Ap-
proach to ComputeMixed Strategy Solutions for General Stackelberg Games.
In 2021 Genetic and Evolutionary Computation Conference Companion (GECCO
’21 Companion), July 10–14, 2021, Lille, France. ACM, New York, NY, USA,
2 pages. https://doi.org/10.1145/3449726.3459419

1 INTRODUCTION
Stackelberg games have found a role in a number of applications
including modeling market competition [9], identifying traffic equi-
librium [4], practical security applications [7] and many others.
General Stackelberg Games (GSGs) [1] contain 𝑁 agents, and each
agent 𝑛 must be one of a given set of types 𝜃𝑛 . One player referred
to as the leader, commits to a (mixed) strategy to optimize its utility
function while the other players referred to as followers respond
to the leader’s strategy to optimize their own utility functions. The
GSG we consider in this work has two agents namely a leader and
a follower where 𝜃1 is the set of possible types for the leader (set
to 1 type) and 𝜃2 for the follower. The leader therefore faces mul-
tiple follower types (both) with discrete payoff functions where

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
GECCO ’21 Companion, July 10–14, 2021, Lille, France
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8351-6/21/07.
https://doi.org/10.1145/3449726.3459419

the mixed strategy of the leader is known to the follower (but not
the actual action taken in the round). Prior work that focuses on
developing GA based solution(s) for GSGs is quite sparse with [6]
developing a GA for computing a solution to a Stackelberg game
that uses a continuous and differentiable payoff function for a two
player game with a single type for each player.

2 GENETIC ALGORITHM APPROACH
Following are specifics of the GA approach we develop here:

Initial Population: The initial population is comprised of ran-
domly generated mixed strategies and is seeded with the best de-
terministic strategy of the Stackelberg game [3]. The generation
procedure for mixed strategies satisfies the following constraints:

(1) Probability assigned to each action must be between 0 and 1
(2) Sum of probabilities across all the actions must sum to 1
Fitness Function: We use the idea for fitness function pre-

sented in [6] (which presents a GA for a Stackelberg game with
a continuous and differentiable payoff function) and make suit-
able modifications to account for the discrete payoff function here.

Figure 1: Fitness Computa-
tion

In particular, we model a max-
imization function for the fol-
lower, given an arbitrarymixed
strategy of the leader. We then
use this ’functor’ inside the ob-
jective function of the leader
to develop a bilevel optimiza-
tionmodel [8] inline with ideas
behind game theoretic solu-
tion approaches for GSGs e.g.,
DOBSS algorithm [5] although
there is no notion of a fitness
function. The fitness computa-
tion presented in Fig. 1, can
be mathematically described as
follows: Given a GSG using normal form representation [3], we
denote 𝑋 as index set of pure strategies for the leader (row player),
𝐿 denotes the set of follower types and 𝑄𝑙 denotes the index set of
pure strategies for follower of type 𝑙 (column player). 𝑅𝑙

𝑖 𝑗
and 𝐶𝑙

𝑖 𝑗

are the rewards of the leader and the follower of type 𝑙 respectively.
𝑝𝑙 denotes the a priori probability that a follower of type l will
appear and 𝑍𝑖 denotes the probability of using pure strategy 𝑖 , from
the index set 𝑋 of the leader. The 𝑎𝑟𝑔𝑚𝑎𝑥 function computes the
best response 𝑗 of follower, for a given mixed strategy of the leader
(as encoded in a chromosome of the population). The computed
response 𝑗 is then used in the objective function, to compute the
maximum expected reward for the leader (i.e., fitness value).

223

https://doi.org/10.1145/3449726.3459419
https://doi.org/10.1145/3449726.3459419


GECCO ’21 Companion, July 10–14, 2021, Lille, France Srivathsa, Praveen

Table 1: GA Parameter details

Parameter Value
Population size 50
Crossover rate 0.9
Mutation rate 0.1
Selection Tournament Selection with selection size=3
Crossover mode Simulated Binary Bounded Crossover(SBX)
Upper(𝑥 (𝑈 ) ) / Lower(𝑥 (𝐿) ) bound 1/0
Distribution index 𝜂 (for SBX) 0.1
Mutation mode custom mutation
Generations 100

Selection and Crossover: We use Tournament Selection and
Simulated Binary Crossover for these two operations.

Mutation: We develop a custom mutation operation which is
a combination of exhaustive search along with a relaxed version
of the same. However, only one of them is picked and used prob-
abilistically (with a low probability for exhaustive search). In the
exhaustive search, we vary the probability of an action in the mixed
strategy by (tentatively) adding a small value 𝛿 in an attempt to find
better mixed strategy (after normalization) and is used as replace-
ment if found better than the current best identified so far. This
operation is performed for every action over a set of 𝛿 ’s (i.e., all the
possible combinations of actions and 𝛿 ’s) and the best identified is
returned. The relaxed version is more like a random search wherein
a random action is picked and is then tested with random 𝛿 ’s it-
eratively. If a better mixed strategy is found during this process,
the procedure terminates, else will continue picking random 𝛿’s
(without repetition), till all the 𝛿 ’s are tested for the action picked.

Normalization: Given that some of the operations can result
in violation of probability constraints (as mentioned in "Initial Pop-
ulation"), we use normalization whenever necessary.

Replacement policy: At the end of each generation, if the new
generation of offspring are less fitter than their respective parents,
they would not be allowed in the next generation (borrowed from
[2], to improve the speed of convergence.). If 𝑐1 and 𝑐2 are generated
via crossover with 𝑝1 and 𝑝2 as parents, 𝑐1 is considered as child
of 𝑝1 and 𝑐2 for 𝑝2 (no such notation is needed for mutation).

Termination Conditions: The GA terminates : (a) GA reaches
100 generations. (b) The time limit (of 1 hour) is crossed. (c) The
standard deviation (of fitness) of the population is less than 1 × 10−4.
(d) The difference between the chromosome with best fitness value
in the current and previous generation is less than 1 × 10−4 for 10
consecutive generations.

3 EXPERIMENTAL RESULTS
For experimentation purposes, we use the domain presented in [5],
which is motivated by a patrolling and security application. We
created (normal form) games with 10 and 20 houses involving 1
to 14 and 1 to 8 follower types respectively. Each game models a
patrol route consisting of two houses and five instances of each
game setting were generated for averaging purposes. DOBSS is
a popular algorithm for benchmarking purposes [5] and used in
this work to compute the optimal GSG solution. We used GUROBI
9.0 optimizer to implement the DOBSS algorithm and DEAP 1.3
to implement our GA. Table 1 showcases the parametric details of
the GA we used. Both the algorithms have been implemented with

Figure 2: Average reward

Python interface on a machine with i5 processor and 16 GB RAM
with a cutoff time of 1 hour (3600 seconds). In the case of DOBSS,
the best deterministic strategy of the leader is used (referred to as
DOBSS+DET), if the optimal mixed strategy could not be computed
within the cutoff time. Given that our proposed GA is an anytime
algorithm due to use of normalisation (to keep the chromosomes
within the constraints), it performs well in terms of scalability.

Figure 2 showcases the average reward obtained using the differ-
ent algorithms involving 10 and 20 houses for DOBSS, DOBSS+DET,
GA and DET (best deterministic strategy). For the setting with
10 houses, the average reward obtained by DOBSS is 0.411, and
DOBSS+DET is 0.514, 0.487 for GA, while the value obtained by
DET is 0.472. Similarly, with 20 houses, the average reward for
DOBSS is 0.375, 0.536 for DOBSS+DET, 0.498 for GA while the
value is 0.482 for DET. The graph shows that our proposed GA
performs reasonably well in terms of the average reward obtained.
Our future work will explore ways to improve further the solution
quality obtained using GA and explore possibilities to tailor the GA
to better capture the domain characteristics/constraints of specific
applications.

REFERENCES
[1] Carlos Casorrán, Bernard Fortz, Martine Labbé, and Fernando Ordóñez. 2019. A

study of general and security Stackelberg game formulations. European journal of
operational research 278, 3 (2019), 855–868.

[2] Yao-Chen Chuang, Chyi-Tsong Chen, and Chyi Hwang. 2015. A Real-Coded
Genetic Algorithm with a Direction-Based Crossover Operator. Inf. Sci. 305, C
(June 2015), 320–348. https://doi.org/10.1016/j.ins.2015.01.026

[3] Vincent Conitzer and Tuomas Sandholm. 2006. Computing the optimal strategy
to commit to. In Proceedings of the 7th ACM Conference on EC. ACM, 82–90.

[4] W. Krichene, J. D. Reilly, S. Amin, and A. M. Bayen. 2014. Stackelberg Routing on
Parallel Networks With Horizontal Queues. IEEE Trans. Automat. Control 59, 3
(March 2014), 714–727. https://doi.org/10.1109/TAC.2013.2289709

[5] Praveen Paruchuri, Jonathan P Pearce, Janusz Marecki, Milind Tambe, Fernando
Ordonez, and Sarit Kraus. 2008. Playing games for security: An efficient exact
algorithm for solving Bayesian Stackelberg games. In AAMAS. 895–902.

[6] João Pedro Pedroso et al. 1996. Numerical solution of Nash and Stackelberg
equilibria: an evolutionary approach. In Proceedings of SEAL, Vol. 96. 151–160.

[7] James Pita, Manish Jain, Janusz Marecki, Fernando Ordóñez, Christopher Portway,
Milind Tambe, Craig Western, Praveen Paruchuri, and Sarit Kraus. 2008. Deployed
ARMOR protection: the application of a game theoretic model for security at the
Los Angeles International Airport.. In AAMAS (Industry Track). 125–132.

[8] Ankur Sinha, Pekka Malo, and Kalyanmoy Deb. 2017. A review on bilevel op-
timization: From classical to evolutionary approaches and applications. IEEE
Transactions on Evolutionary Computation 22, 2 (2017), 276–295.

[9] Heinrich Von Stackelberg. 2010. Market structure and equilibrium. Springer Science
& Business Media.

224

https://doi.org/10.1016/j.ins.2015.01.026
https://doi.org/10.1109/TAC.2013.2289709

	Abstract
	1 Introduction
	2 Genetic Algorithm approach
	3 Experimental Results
	References

