
ALF – A Fitness-Based Artificial Life Form for Evolving
Large-Scale Neural Networks

Rune Krauss Marcel Merten Mirco Bockholt Rolf Drechsler
Group of Computer Architecture, University of Bremen, Cyber-Physical Systems, DFKI GmbH, Germany

{krauss, mar_mer, bockholt, drechsler}@uni-bremen.de

ABSTRACT
Topology and Weight Evolving Artificial Neural Network (TWEANN)
is a concept to find the topology and weights of Artificial Neural
Networks (ANNs) using genetic algorithms. However, a well-known
downside is that TWEANN algorithms often evolve inefficient large
ANNs for large-scale problems and require long runtimes.

To address this issue, we propose a new TWEANN algorithm
called Artificial Life Form (ALF) with the following technical ad-
vancements: (1) speciation via structural and semantic similarity
to form better candidate solutions, (2) dynamic adaptation of the
observed candidate solutions for better convergence properties,
and (3) integration of solution quality into genetic reproduction to
increase the probability of optimization success. Experiments on
large-scale problems confirm that these approaches allow effective
solving of these problems and lead to efficient evolved ANNs.

CCS CONCEPTS
• Computing methodologies → Genetic algorithms; Neural
networks;

KEYWORDS
Neuroevolution, Genetic Algorithms, Neural Networks

1 INTRODUCTION
The concept Weight Evolving Artificial Neural Network (TWEANN)
allows the evolution of the topology and weights of Artificial Neural
Networks (ANNs) using genetic algorithms. Several studies have
shown that TWEANN algorithms are capable to solve complex
control tasks [6]. However, for large-scale problems the ANN size
can grow rapidly and lead to inefficient large ANNs [5]. Although
efforts have been made to improve the capability of TWEANN
algorithms to solve problems with large state spaces, there is still
room for improvement for existing technologies [4].

This paper proposes a new TWEANN algorithm called Artificial
Life Form (ALF), which has the following main advantages over
existing TWEANN algorithms: (1) speciation via structural and
semantic similarity to form better candidate solutions, (2) dynamic
adaptation of the observed candidate solutions for better conver-
gence properties, and (3) integration of solution quality into genetic
reproduction to increase the probability of optimization success.
These approaches improve the runtime and memory usage, lead-
ing to efficient evolved ANNs. Experimental results on large-scale
problems confirm this performance.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
GECCO ’21 Companion, July 10–14, 2021, Lille, France
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8351-6/21/07.
https://doi.org/10.1145/3449726.3459545

2 ARTIFICIAL LIFE FORM (ALF)
Our new proposed TWEANN algorithm called ALF integrates three
main components described in detail below to address the issue of
efficiently evolving ANNs for large-scale problems: (1) Structural
and Semantic Speciation (SSS), (2) Dynamic Adaptation of Popula-
tion (DAP), and (3) Fitness-Based Genetic Operators (FBGO).

To protect individuals’ ANNs with new innovations, the concept
of species was introduced in [7]. In ALF, species are classified struc-
turally and semantically. Depending on the problem, the overall
similarity between two individuals is calculated using the weighted
arithmetic mean. The structural comparison determines the sim-
ilarity via the number of shared connections between the ANNs.
The semantic comparison measures the similarity of the ANNs’
predictions via the Pearson correlation. While structural species
comparison protects topological diversity, semantic comparison
protects diversity of behavior patterns. Both factors contribute to
increasing genetic diversity. Thus, the objective of SSS is to support
diversity of complex structures and behavior patterns to form better
individuals so that the search for a solution is efficient.

If the population size cannot change within generations, this
may lead to stagnation of exploration in unsuitable search regions
that do not advance learning. Therefore, dynamic population is
introduced in ALF, which is described as follows. In ALF, fitness
sharing is used as in [7]. The fitness proportion of the species si
is denoted as Fsi . Each species is also assigned an age Asi , which
identifies how many generations this very species has been in the
population. To decide whether a species is to be deleted, both factors
are considered in combination, which is shown by Equation (1)

Fsi <
1
n
∧Asi > Ao , (1)

where n is the number of species and Ao is the age of the old-
est species. Both factors penalize older species while protecting
younger species. In addition, to avoid unnecessary evaluations, the
weakest individuals of each species are also deleted depending on
Fsi . The new population size Pnew depends on the proportion of
deleted species Sdel , which is shown by Equation (2)

Pnew =

{
min(Pmax , Pold · (1 + Sdel)), Sdel > 0
max(Pold − Pinit · ebb, Pinit ), Sdel = 0

, (2)

where ebb is an ebb factor, Pmax is the maximum population size,
and Pinit is theminimumpopulation size. The number of reproduced
offspring Osi of a respective species also depends on its fitness
proportion and is determined by Equation (3)

Osi = Fsi · (1 − oinit ) · (Pnew − (Pmax − Pvacant )), (3)

where Pvacant is the available room that can be used for the repro-
duction and oinit is the proportion of newly initialized ANNs, so
that possible dead ends can be overcome with a higher probability.

225

https://doi.org/10.1145/3449726.3459545


Hence, the objective of DAP is to improve convergence proper-
ties by overcoming insufficient search regions through increased
simultaneous sampling.

Based on the selected parents, variation operators are applied
to reproduce offspring and explore the search space. In a stan-
dard mutation, ANNs are changed randomly. While small changes
can increase the time required to explore the search space, large
changes are not suitable for local optimization. Furthermore, cross-
over of ANNs of unequally fit individuals may result in unsuitable
ANNs, leading to slow convergence. To counteract these problems,
ALF introduces fitness-based mutation and crossover. Mutations
in ALF can change connection weights and ANN structures. For
all mutations, a mutation ratemr is calculated, which is defined
in Equation (4).

mr =min

(
max

(
1,
((
(1 +mo ) −

F

ft

)
·ma

))
,ma

)
(4)

The offsetmo determines up to which proportion of the current fit-
ness F of an individual in relation to the global fitness threshold ft
the maximum number of mutation attemptsma is performed. The
weight mutation changes a connection weight by adding a random
number from the normal distribution N

(
0, 1.25 − F

ft

)
. The fitter

an individual is, the smaller changes are made. If F is low compared
to ft , the search process has more influence. If F is high, the opti-
mization process is strengthened. In order to change connections
more frequently than layers or nodes, it is determined for these
mutations in addition tomr whether the respective mutation is per-
formed. The corresponding probability calculation Pmut is defined
in Equation (5)

Pmut =min
©­«1 +mo −

E
Efull
+ F

ft

2
, 1ª®¬ , (5)

where E is the current number of connections and Efull is the num-
ber of possible connections (assuming the ANN is fully connected).
The proportion of connections describes the potential for new con-
nections, i. e., new connection possibilities (nodes or layers) become
more likely if the proportion is closer to 1. In this context, node mu-
tation randomly adds hidden nodes into layers. The corresponding
number of nodes Vmut is determined by Equation (6)

Vmut =

⌈
Vmax −

F

ft
·Vmax

⌉
, (6)

whereVmax is predetermined and denotes the maximum number of
nodes to be added. The layer mutation inserts a new hidden layer.
While mutations are always attempted and gradually increase the
ANN size, a predetermined hyper-parameter determines the cross-
over probability with respect to two selected individuals of a species.
Before crossover, the respective fitness proportion of the individu-
als is interpreted as probability during the ANN comparison. Nodes
and connections are inherited with a higher probability from the
fitter parent. As a result, the objective of FBGO is to increase the
probability of optimization success of individuals.

3 EXPERIMENTAL RESULTS
In order to measure the performance of ALF’s components, we
chose NeuroEvolution of Augmenting Topologies (NEAT) [7] as test
algorithm for comparison, since it has already proven to be success-
ful in complex control learning tasks and games compared to other

Table 1: Comparison betweenNEATandALF in terms of run-
time and ANN sizes to solve different large-scale problems

Algorithm

SMB NEAT ALF

t in min G E H t in min G E H

World 4-2 1,438 387 3,873 1,159 978 194 2,445 304
World 4-4 1,373 372 3,621 1,106 889 157 2,219 339
World 7-2 1,894 486 4,305 1,438 1,454 273 3,252 483

algorithms [2]. We configured Super Mario Bros. (SMB) as a bench-
mark task by setting genetic and ANN hyper-parameters for NEAT
and ALF, which we determined through experiments and observa-
tions [3]. To allow a representative comparison, the same available
parameters, such as population size, were adjusted accordingly. In
order to study as many game elements as possible, we considered
the SMB game worlds 4-2, 4-4, and 7-2 as large-scale problems. The
criterion for success was to complete the respective level. Since this
task is PSPACE-complete [1], we considered it as sufficient hard to
test ALF’s capabilities. Specifically, the average time in minutes (t
in min), average number of generations (G), ANN connections (E),
and hidden nodes (H) required to solve the problems was compared
in 10 runs.

The results are summarized in Table 1 and clearly confirm that
the components proposed satisfy the objectives of this work. ALF
outperforms NEAT in all comparisons, solving the problems about
461 minutes faster on average and requires 207 generations less
compared to NEAT. In addition, the ANN sizes are reduced by about
41.67 % on average.

4 CONCLUSION
This work focused on one of the main challenges in TWEANN:
the efficient solving of large-scale problems. For this purpose, we
have developed ALF with different main components – structural
and semantic speciation, dynamic adaptation of observed candidate
solutions, and integration of solution quality into genetic reproduc-
tion. Experimental results confirmed that via these components,
effective solving of large-scale problems is allowed, leading to ef-
ficient evolved ANNs. Future work will include optimizing the
approaches described and extending the comparisons with other
test algorithms and benchmark tasks.

REFERENCES
[1] Erik Demaine, Giovanni Viglietta, and Aaron Williams. 2016. Super Mario Bros. Is

Harder/Easier than We Thought. (06 2016).
[2] Matthew Hausknecht, Joel Lehman, Risto Miikkulainen, and Peter Stone. 2014.

A Neuroevolution Approach to General Atari Game Playing. Computational
Intelligence and AI in Games, IEEE Transactions on 6 (12 2014), 355–366. https:
//doi.org/10.1109/TCIAIG.2013.2294713

[3] Rune Krauss, Marcel Merten, Mirco Bockholt, and Rolf Drechsler. 2021. ALF –
A Fitness-Based Artificial Life Form for Evolving Large-Scale Neural Networks.
(2021). arXiv:2104.08252

[4] Yiming Peng, Gang Chen, Harman Singh, and Mengjie Zhang. 2018. NEAT for
large-scale reinforcement learning through evolutionary feature learning and
policy gradient search. 490–497. https://doi.org/10.1145/3205455.3205536

[5] Kenneth Stanley, David D’Ambrosio, and Jason Gauci. 2009. A Hypercube-Based
Encoding for Evolving Large-Scale Neural Networks. Artificial life 15 (02 2009),
185–212. https://doi.org/10.1162/artl.2009.15.2.15202

[6] Kenneth Stanley and Risto Miikkulainen. 2003. Competitive Coevolution through
Evolutionary Complexification. Journal of Artificial Intelligence Research 21 (02
2003). https://doi.org/10.1613/jair.1338

[7] K. O. Stanley and R. Miikkulainen. 2002. Evolving Neural Networks through
Augmenting Topologies. Evolutionary Computation 10, 2 (2002), 99–127. https:
//doi.org/10.1162/106365602320169811

226

https://doi.org/10.1109/TCIAIG.2013.2294713
https://doi.org/10.1109/TCIAIG.2013.2294713
http://arxiv.org/abs/2104.08252
https://doi.org/10.1145/3205455.3205536
https://doi.org/10.1162/artl.2009.15.2.15202
https://doi.org/10.1613/jair.1338
https://doi.org/10.1162/106365602320169811
https://doi.org/10.1162/106365602320169811

	Abstract
	1 Introduction
	2 Artificial Life Form (ALF)
	3 Experimental Results
	4 Conclusion
	References

