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CCS CONCEPTS 2 GAMBIT AND MO-GAMBIT

« Computing methodologies — Search methodologies; Genetic
algorithms.
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1 INTRODUCTION

Mixed-integer optimization, which focuses on problems where
discrete and continuous variables exist simultaneously, is a well-
known and challenging area for search algorithms. Mixed-integer
optimization problems are especially difficult in a black-box setting
where no structural problem information is available a-prior. In
this paper we bring the strengths of the recently-proposed Genetic
Algorithm for Model-Based mixed-Integer opTimization (GAMBIT)
to the multi-objective (MO) domain, and determine whether the
promising performance of GAMBIT is maintained. We introduce
various mechanisms designed specifically for MO optimization re-
sulting in MO-GAMBIT. We compare performance - in terms of
the number of evaluations used - and runtime with alternative
techniques, particularly linear scalarization and a selection of alter-
native MO algorithms. To this end, we introduce a set of objective
functions which vary in composition in terms of discrete and contin-
uous variables, as well as in the strength of dependencies between
variables. Our results show that MO-GAMBIT can substantially
outperform the alternative MO algorithms, thereby providing a
promising new approach for multi-objective mixed-integer opti-
mization in a black-box setting.
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MO-GAMBIT introduces new mechanisms to GAMBIT in order
to handle multiple objectives. Some fundamental functionality of
MO-GAMBIT however, is based on the existing, single-objective
version of GAMBIT [5].

GAMBIT is a model-based EA designed for optimization of
mixed-integer problems in a black-box setting. To overcome this
initial lack of problem information, GAMBIT attempts to learn
and exploit the underlying problem structure during execution, by
means of estimating variable dependencies. To this end, GAMBIT
utilizes a combination of a clustering mechanism with an integrated
dependency models mechanism that constructs variable subsets
which represent likely important building blocks. Performing varia-
tion by respecting the structural integrity indicated by these blocks,
i.e, considering and treating variables in blocks in a joint fashion,
can lead to efficient exploitation of problem structure, resulting in
generating better new solutions faster. GAMBIT utilizes already
existing approaches for learning and processing discrete and con-
tinuous variables as part of the integrated-models mechanism: The
Linkage Tree Genetic Algorithm (LTGA) [6] and the Incremental
Adapted Maximum-Likelihood Gaussian Model Iterated Density
Estimation Evolutionary Algorithm (iAMaLGaM) [2] respectively
for the discrete and continuous components and introduces new
mechanisms to handle intra-variable domain depenencies.

In vast majority of cases a single solution cannot be considered
a comprehensive solution to a MO problem, however. Instead, a
typical solution to a MO problem is represented as a set of so-called
Pareto-optimal solutions, which form a front of optimal solutions.
A theoretically optimal solution to a MO problem is a set of such
non-dominated solutions which form a Pareto-front. In order to
estimate the Pareto front, MO-GAMBIT uses a variety of mecha-
nisms. Specifically, Elitist Archive which uses a technique that
adaptively changes the grid that governs the elitist archive so as to
harbor a predefined maximum number of solutions, preventing oc-
currences of very similar solutions in the archive while promoting
diversity [1] [4]. Selection and Variation mechanisms that allow
MO-GAMBIT to specialize model-based optimization in different
areas of the Pareto front by performing clustering in the objective
space. Multistart scheme which dynamically introduces larger
population sizes and more clusters, removing the need to explicitly
set parameters such as cluster or population size.
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3 BENCHMARKS AND ALGORITHMS

Each of the MO problems in Table 1 represents different features
of a problem landscape, based on the objective components they
are made up of, with varying degrees of inter- and intra-variable
dependencies.

Table 1: Multi-Objective Problems

Name Objectives
MO1 Obj1: Fi(Xq, Xc) = Fonemax(Xd) + Fsphere(Xc)
Obj2: F2(x4, Xc) = Fzeromax(Xd) + Fsphere-1 (%c)
MO2 Obj1:F1 (Xg, Xc) = Fonemax(Xd) + Fsphere (Xc)
Obj2: F4(x4, Xc) = Fprs(xq) + Fr Enip. (Xc)
Mo3 | OPil: F3(Xa.Xe) = Fprs,,, (Xa) + Fr E11ip.-1(Xc)
Obj2: F4 (x4, Xc) = Fprs(xq) + Fr g11ip.(Xc)

The following algorithms and variants were used for comparison
with MO-GAMBIT.

Repeated GAMBIT with Objective Scalarization utilizes
weighted scalarization of objectives with the single-objective GAB-
MIT: SO-GAMBIT-One-Norm and SO-GAMBIT-Infinity-Norm vari-
ants.

MO-iAMaLGaM models a Gaussian distribution using Pareto-
dominance based solution raking, clustering the objective space and
generating new solutions via sampling the clustered distribution.

NOMAD: The Nonlinear Optimization by Mesh Adaptive Direct
Search algorithm implements the Mesh Adaptive Direct Search
(MADS) algorithm, and is designed for black-box optimization un-
der general nonlinear constraints in the MO setting [3].

4 RESULTS

MO-GAMBIT results show advantages of a dedicated multi-objective
approach. On all three problems the overhead of MO mechanisms
is outweighed by the resulting performance, as MO-GAMBIT out-
performs both SO-GAMBIT variants.

From the results in it is clear that the MO-iAMaLGaM approach
becomes very inefficient when facing problems with strong variable
dependencies in the domain that they were not designed for. In
terms of number of evaluations needed, NOMAD performs best
on the MO1 problem, very quickly reaching high hyper-volume
values. MO-GAMBIT requires more evaluations to reach the same
values. However, in terms of runtime NOMAD is much slower
than the remaining algorithms. With strong variable dependencies
present in MO, andMO3, MO-GAMBIT outperforms the remaining
algorithms in terms of both number of evaluations and runtime
needed to reach high values of the hyper-volume.

5 CONCLUSIONS

Our results show that single-objective scalarization-based approaches
are less efficient and require additional parametrization. Direct
extensions of multi-objective algorithms targeted at one type of
variable (i.e. continuous or discrete) will likely also always fall
short when faced with problem landscapes with strong variable
dependencies in the variable domain they were not designed for, as
illustrated with the MO-iAMaLGaM.
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Figure 1: Number of black-box evaluations and run-times vs.
hyper-volume of the selected MO algorithms on MO;-MO3

Overall, MO-GAMBIT achieved favorable results compared to
alternatives, including a well-known mixed-integer optimization
algorithm for MO problems, NOMAD. Good results were achieved
on problems with and without variable dependencies, regardless
of whether the Pareto front is convex or concave. We therefore
believe that our results further motivate the use of MO-GAMBIT
over all the alternatives considered in this paper for mixed-integer
MO optimization.
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