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ABSTRACT
We introduce the CliqueTreeMk algorithm to construct tree decom-
position (TD) Mk Landscapes and to compute their global optimum
efficiently. TD Mk Landscapes are well suited to serve as bench-
mark functions for blackbox genetic algorithms that are not given
a priori the structural problem information as specified by the tree
structure and their associated codomain fitness values. Specifically,
for certain types of codomains the use of linkage learning might
prove to be necessary in order to be able to solve these type of
fitness functions.

CCS CONCEPTS
• Computing methodologies→Heuristic function construc-
tion;

KEYWORDS
Benchmarking, Decomposable Landscapes, Dynamic Programming
ACM Reference Format:
Dirk Thierens and Tobias van Driessel. 2021. A Benchmark Generator of
Tree Decomposition Mk Landscapes. In Proceedings of the Genetic and Evo-
lutionary Computation Conference 2021 (GECCO ’21). ACM, New York, NY,
USA, 2 pages. https://doi.org/10.1145/3449726.3459427

1 INTRODUCTION
Suitable benchmark functions are vital to test the effectiveness and
performance of evolutionary algorithms. Ideally, these benchmark
functions should be completely understood in the sense that we
know their structure and, importantly, their global optimum (or op-
tima) so that we can check if a given EA has actually found the best
possible solution. A problem with designing benchmark functions
is that for many interesting problem classes it is not possible to com-
pute the global optimum efficiently. Not knowing whether an EA
has found the best solution limits the practical use of the benchmark
and only allows relative comparisons between different algorithms
- or different parameter settings of a given algorithm - but it does
not allow to evaluate the overall performance and effectiveness. For
example, [1] propose an interesting class of benchmark functions,
but unfortunately there is no way to efficiently compute the global
optimum. Similarly, the well known NK Landscapes does not allow
to compute the global optimum. For this reason, EA researchers of-
ten use the Adjacent NK Landscapes where the interaction between
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the variables is limited to adjacent problem variables, allowing the
use of dynamic programming to compute the global optimum.

2 TREE DECOMPOSITION MK LANDSCAPES
Although (Adjacent) NK Landscapes are popular as a benchmark
for optimization algorithms, its constraints (M = N , k = K + 1,
and variable xi must appear in subfunction fi ) are unnecessary for
most benchmark purposes, as they turn out not to be important
for most fundamental theoretical properties of NK Landscapes [2].
Whitley et al.[3] therefore introduced the term Mk Landscapes to
refer to any k-bounded pseudo-Boolean optimization problem, thus
a generalization of NK Landscapes without these constraints.M is
the number of subfunctions and k is a constant that provides an
upper bound on the interaction order size of the subfunctions, with
M being polynomial in n.

Whitley introduced an important subclass of Mk Landscapes:
the Tree Decomposition (TD) Mk Landscapes. The global optimum
of Adjacent NK Landscapes can be computed efficiently because
they control the tree-width of the variable interaction graph by
considering only adjacent variables for the subfunctions. Similarly,
Whitley et al. created Tree Decomposition Mk Landscapes that
control the tree-width of the interaction graph in a more general
way, thereby allowing the use of dynamic programming to do opti-
mization in polynomial time. A Tree Decomposition Mk Landscape
(TD Mk Landscape) is any Mk Landscape which has a known and
bounded tree-width of k [3]. Tree Decomposition Mk Landscapes
can be optimized in polynomial time if k ∈ O(logn) when one
knows the tree decomposition and the associated fitness values of
the subfunctions of the clique variables.

2.1 CliqueTreeMk
Whitley et al.[3] introduced a construction algorithm for TD Mk
Landscapes, however, it limits the construction to TD Mk Land-
scapes which have a chain as tree decomposition, just like Adjacent
NK Landscapes. Obviously, chains are restricted trees, they cannot
represent the added complexity that arises from TD Mk landscape
composed of a branching tree. Here, we introduce an algorithm to
construct branching - or tree-based - TD Mk Landscapes, and apply
dynamic programming to efficiently compute the global optimum
(or multiple global optima).

The CliqueTreeMK algorithm constructs a TD Mk Landscape by
progressively selecting subsets of the problem variables that are
put in a random order, and each subset becomes a clique in the
clique tree. The first k variables from the shuffled variable list are
assigned to become the root of the clique tree C0. Next, for every
clique Ci , b children cliques Cj ∈childreni are selected until we have
constructedM cliques. Each childCj overlaps with its parentCi for
o variables, described by the separator Sj between Ci and Cj , and
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the remaining k − o variables are taken from the shuffled variable
list to complete Cj .

A dynamic programming algorithm then uses this clique tree
structure with its cliques and separators to calculate the global
optimum. Starting at the leaves of the tree, for each separator Sj
we store for each of the instances of the separator variables the
maximizing variable values for its child clique Cj and the resulting
score. Then, we can iterate in the reverse direction and assign values
to the clique variables in Cj based on the maximizing values for its
variables stored in its parent separator Cj .

We illustrate the CliqueTreeMK algorithm during these phases
using an example instance with number of subfunctions M = 7,
subfunction size k = 3, and overlap o = 2. Together, these define
length N = 9. Furthermore, we choose a branching factor b = 2.
The construction algorithm uses fixed values for k , o, and b, but
the algorithm can be extended to allow for non-fixed values during
construction. In the example the variables are randomly ordered:
(x4,x2,x7,x5,x1,x9,x3,x8,x6).

2.1.1 CliqueTreeMK Algorithm.

(1) At the start of the algorithm, take next k variables as clique
C0. Otherwise take next already constructed clique Ci .

(2) Choose random o variables from parent clique Ci , assign to
separator Sj

(3) Take next (k − o) unchosen variables and add the variables
from Sj to construct child clique Cj

(4) Go to step 2 until b branches have been built
(5) Go to 1 to build the whole tree

Following the algorithm with the given example instance could
result in the following list of cliques: (x4,x2,x7), (x4,x7,x5), (x4,x2,x1),
(x7,x5,x9), (x4,x7,x3), (x4,x1,x8), (x2,x1,x6)
Figure 1 shows the constructed clique tree with its separators.
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Figure 1: Clique tree with Cliques Ci and Separators Si .

3 EXPERIMENTAL RESULTS
We have implemented the CliqueTreeMk algorithm and a dynamic
program to generate and compute the global optimum (or global
optimal) of TDMk landscapes with a given number of subfunctions,
length of the subfunctions, overlap size, and branching factor. These
functions are very well suited to act as a benchmark1 for blackbox
genetic algorithms that are not given the structural information of
the optimization problem - this is, the position of the subfunctions.
1Available at https://github.com/tobiasvandriessel/problem-generator

After specifying the tree structure of the TD Mk landscape a
codomain for the subfunctions needs to be chosen. Possible values
could be random real numbers between 0 and 1 as in the original NK
landscape, quantized values that enforce the fitness contribution
values to take one of Q possible discrete values as in the NK-Q
landscape, deceptive trap functions, etc . . . .

As an example we generated TD Mk landscapes with random
real values and with quantized values (Q = 2) for a tree with
overlap o = 1, branching factor b = 2, clique sizes k = 3, 4, 5, and
number of cliques M = 4, 5, 6, 7, 8, 9, 10. We applied a multi-start,
single bit-flipping, local search algorithm (MLS) to explore these
landscapes. The results shown are median values averaged over
25 runs of 100,000 fitness function evaluations with MLS. Clearly,
the landscapes generated are very different for the two types of
codomain, especially the actual number of global optima which can
all be computed efficiently by the CliqueTreeMK algorithm.

k M
4 5

3 60/60-28(28) 179/179-64(64)
4 773/756-587(587) 2548/1670-1638(1910)
5 5237/2007-4547(8254) 5685/267-4876(61960)

Table 1: NK-Q (o = 1, b = 2). #unique local optima found /
#unique local optima foundmore than once - #unique global
optima found (exact number of unique global optima).

k M
6 7 8 9 10

3 16/16-1 22/22-1 28/28-1 46/46-1 64/64-1
4 128/122-1 271/217-1 423/260-1 678/238-1 689/173-1
5 853/284-1 930/138-0 858/59-0 790/17-0 730/4-0

Table 2: Random-NK (o = 1, b = 2). #unique local optima
found / #unique local optima found more than once -
#unique global optima found (there is 1 global optimum).

4 CONCLUSIONS
We have outlined the CliqueTreeMk algorithm to generate tree de-
composable Mk landscapes, and to efficiently compute their global
optimum (or optima). By varying the codomain of the landscape,
multiple types of problems can be created. TD Mk Landscapes are
well suited to serve as benchmark functions for blackbox Genetic
Algorithms that are not given the structural problem information
as specified by the clique tree. Specifically, for particular codomains
- for instance (partially) deceptive functions - linkage learning tech-
niques will be necessary to be able to find the global optimum (or
optima) reliably and efficiently.
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