
Runtime Analysis via Symmetry Arguments
(Hot-off-the-Press Track at GECCO 2021)

Benjamin Doerr

Laboratoire d’Informatique (LIX)

École Polytechnique, CNRS

Institut Polytechnique de Paris

Palaiseau, France

ABSTRACT
We use an elementary argument building on group actions to prove

that the selection-free steady state genetic algorithm analyzed

by Sutton and Witt (GECCO 2019) takes an expected number of

Ω(2𝑛/
√
𝑛) iterations to find any particular target search point. This

bound is valid for all population sizes 𝜇. Our result improves and

extends the previous lower bound of Ω(exp(𝑛𝛿/2)) valid for pop-

ulation sizes 𝜇 = 𝑂 (𝑛1/2−𝛿), 0 < 𝛿 < 1/2. This paper for the Hot-
off-the-Press track at GECCO 2021 summarizes the work Benjamin
Doerr. Runtime Analysis of Evolutionary Algorithms via Symmetry
Arguments. Information Processing Letters, 166:106064. 2021. [5].

CCS CONCEPTS
• Theory of computation→ Theory and algorithms for ap-
plication domains; Theory of randomized search heuristics.

KEYWORDS
Runtime analysis, theory, group actions.

ACM Reference Format:
Benjamin Doerr. 2021. Runtime Analysis via Symmetry Arguments (Hot-

off-the-Press Track at GECCO 2021). In 2021 Genetic and Evolutionary Com-
putation Conference Companion (GECCO ’21 Companion), July 10–14, 2021,
Lille, France. ACM, New York, NY, USA, 2 pages. https://doi.org/10.1145/

3449726.3462720

SUMMARY OF OUR RESULTS
The theory of evolutionary algorithms (EAs) has produced a decent

number of mathematically proven runtime analyses. They explain

the working principles of EAs, advise how to use these algorithms

and how to choose their parameters, and have even led to the in-

vention of new algorithms. We refer to [1, 7, 9, 10] for introductions

to this area.

Due to the complexity of the probability space describing a run

of many EAs, the majority of the runtime analyses regard very

simple algorithms. In particular, there are only relatively few works

discussing algorithms that employ crossover, that is, the generation

This work was supported by a public grant as part of the Investissement d’avenir

project, reference ANR-11-LABX-0056-LMH, LabEx LMH..

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

GECCO ’21 Companion, July 10–14, 2021, Lille, France
© 2021 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-8351-6/21/07.

https://doi.org/10.1145/3449726.3462720

of offspring from two parents. Among these, again very few present

lower bounds on runtimes; we are aware of such results only in [8,

11, 13, 15].

In the most recent of these works, Sutton andWitt [15, Section 3]

consider a simple crossover-based algorithm called StSt

(𝜇
2

)
GA0, a

selection-free variant of a steady state genetic algorithm proposed

earlier in [16]. It works with the search space Ω = {0, 1}𝑛 of bit

strings of length 𝑛. The algorithm uses a population of size 𝜇 ≥ 2.

Each iteration consists of (i) choosing two different individuals

randomly from the population, (ii) applying a two-offspring uniform

crossover, and (iii) replacing the two parents with the two offspring

in the population.

For two parents 𝑥 and𝑦, the two offspring 𝑥 ′ and𝑦′ are generated
as follows. For all 𝑖 ∈ [1..𝑛] := {1, . . . , 𝑛} with 𝑥𝑖 = 𝑦𝑖 , we have

𝑥 ′
𝑖
= 𝑦′

𝑖
= 𝑥𝑖 with probability one. For all 𝑖 ∈ [1..𝑛] with 𝑥𝑖 ≠ 𝑦𝑖 ,

we have (𝑥 ′
𝑖
, 𝑦′

𝑖
) = (1, 0) and (𝑥 ′

𝑖
, 𝑦′

𝑖
) = (0, 1) each with probability

1/2.
The pseudocode of the StSt

(𝜇
2

)
GA0 is given in Algorithm 1. We

did not specify a termination criterion since we are interested in

how long the algorithm takes to find a particular solution when

not stopped earlier. We also did not specify how to initialize the

population since we will regard a very particular initialization later.

We generally view populations as multisets, that is, an individual

can be contained multiple times and this is reflected in the uniform

random selection of individuals. Formally speaking, this means that

a population is a 𝜇-tuple of individuals and individuals should be

referred to via their index in this tuple.

Algorithm 1: The StSt
(𝜇
2

)
GA0 with population size 𝜇 ≥ 2

operating on the search space {0, 1}𝑛 .
1 𝑡 ← 0;

2 Initialize 𝑃0 with 𝜇 individuals from {0, 1}𝑛 ;
3 for 𝑡 = 1, 2, . . . do
4 Choose from 𝑃𝑡−1 two random individuals 𝑥 and 𝑦

without replacement;

5 (𝑥𝑡 , 𝑦𝑡) ← crossover(𝑥,𝑦);
6 𝑃𝑡 ← 𝑃𝑡−1 \ {𝑥,𝑦} ∪ {𝑥𝑡 , 𝑦𝑡 };

There is no fitness-based selection and nomutation in this simple

process. Clearly, an algorithm of this kind is not expected to be very

useful in practice. The reason to study such algorithms is rather

that they allow to analyze in isolation how crossover works (more

reasons to study this particular algorithm are described in [15]).

Without fitness-based selection, and thus without regarding the

problem to be optimized, one would expect that this algorithm

23

https://doi.org/10.1145/3449726.3462720
https://doi.org/10.1145/3449726.3462720
https://doi.org/10.1145/3449726.3462720

GECCO ’21 Companion, July 10–14, 2021, Lille, France Benjamin Doerr

takes an exponential time to find any particular search point of

the search space Ω = {0, 1}𝑛 . Surprisingly, this is not so obvious,

at least not when working with a particular initialization of the

population.

Since a typical reason why crossover-based algorithms become

inefficient is a low diversity in the population, Sutton and Witt

consider an initialization of the StSt

(𝜇
2

)
GA0 which has “extremely

high diversity”, namely 𝜇/2 copies of the string 𝑧 = (1010 . . . 10)
and 𝜇/2 copies of the string 𝑧′ = (0101 . . . 01). This population has

the same number of zeros and ones in each bit position and has the

maximal number of pairs of individuals with maximal Hamming

distance 𝑛.1 Still, this initialization is fair with respect to the target

of generating the string 𝑥∗ = (11 . . . 1) in the sense that all initial

individuals have from 𝑥∗ a Hamming distance of 𝑛/2, which is the

expected Hamming distance of a random string from 𝑥∗ (and the

expected Hamming distance of any string from a random target).

Sutton andWitt [15, Theorem 10] show that their algorithmwith

this initialization and with population size 𝜇 = 𝑂 (𝑛1/2−𝛿), 𝛿 < 1/2
a constant, takes an expected number of Ω(exp(𝑛𝛿/2)) iterations
to generate the target string 𝑥∗ = (11 . . . 1). Apparently, this lower
bound is subexponential, namely at most of order exp(𝑛1/4), for
all population sizes. It becomes weaker with increasing population

size and is trivial for 𝜇 = Ω(
√
𝑛). We remark that this lower bound

proof served as an example of an application of a more general

result, which quantifies how the individuals in the population of

the StSt

(𝜇
2

)
GA0 converge, in distribution, to individuals in which

each bit is sampled independently and with a probability for a one

equal to the rate of ones in this position in the initial population.

In this work, we do not touch this general result, but only regard

the runtime of the StSt

(𝜇
2

)
GA0. By exploiting symmetries in the

stochastic process, we improve the lower bound to Ω(2𝑛/
√
𝑛) for

all values of 𝜇.

Theorem. Let 𝑡, 𝜇, 𝑛 ∈ N with 𝜇 and 𝑛 even. Consider a run of the
StSt

(𝜇
2

)
GA0 initialized with 𝜇/2 copies of 𝑧 = (1010 . . . 10) and 𝜇/2

copies of 𝑧′ = (0101 . . . 01). Let 𝑇 be the first iteration 𝑡 in which the
search point 𝑥∗ = (11 . . . 1) is generated.

Then Pr[𝑇 ≤ 𝑡] ≤ 2𝑡/
(𝑛
𝑛/2

)
. In particular, the expected time to

generate 𝑥∗ satisfies 𝐸 [𝑇] ≥ 1

4

(𝑛
𝑛/2

)
= Ω(2𝑛/

√
𝑛).

Our proof is based on a simple group action or symmetry argu-

ment. We observe that the automorphisms of the hypercube {0, 1}𝑛
(viewed as graph) commute with the operations of the StSt

(𝜇
2

)
GA0.

Consequently, if an automorphism𝜎 stabilizes the initial individuals

𝑧 and 𝑧′ (that is, 𝜎 (𝑧) = 𝑧 and 𝜎 (𝑧′) = 𝑧′), then for any 𝑥 ∈ {0, 1}𝑛
at all times 𝑡 the probability that the algorithm generates 𝑥 equals

the probability that it generates 𝜎 (𝑥).
From this symmetry, we conclude that if 𝐵 is the set of all 𝑥 such

that there is an automorphism of the hypercube that stabilizes the

initial individuals and such that 𝑥 = 𝜎 (𝑥∗), then at all times the

probability that 𝑥∗ is generated, is at most 1/|𝐵 |. We compute that

𝐵 has exactly

(𝑛
𝑛/2

)
elements. Hence each search point generated

by the StSt

(𝜇
2

)
GA0 is equal to 𝑥∗ only with probability

(𝑛
𝑛/2

)−1
.

A simple union bound over the 2𝑡 search points generated up to

iteration 𝑡 gives the result.

1
We recall that the Hamming distance 𝐻 (𝑥, 𝑦) of two bit strings 𝑥, 𝑦 ∈ {0, 1}𝑛 is

defined by 𝐻 (𝑥, 𝑦) = | {𝑖 ∈ [1..𝑛] | 𝑥𝑖 ≠ 𝑦𝑖 } |.

We believe that our lower bound is close to the truth, which we

expect to be Θ(2𝑛), but we do not have a proof for this conjecture

(in fact, we do not even know if the runtime is exponential – unfor-

tunately, the few existing exponential upper bounds only regard

mutation-based EAs, see [3]).

We note that when using a random initialization instead of the

particular one proposed in [15], then a lower bound of Ω(2𝑛) fol-
lows simply from the fact that each search point that is generated

is uniformly distributed. This argument, in a sense a toy version

of ours, is apparently not widely known in the community; it was

used in [4, Theorem 1.5.3] for a problem which previously [12,

Theorem 5] was attacked with much deeper methods.

It thus seems that the difficulty of the problem posed in [15] not

only stems from the use of crossover, but also from the fact that a

non-random initialization was used. We note that so far the impact

of different initializations has not been discussed intensively in the

literature on runtime analysis of EAs. The only works we are aware

of are [2, 6, 14].

In the light of this state of the art, the two open problems of
improving the lower bound to Ω(2𝑛) and showing an exponential

upper bound appear interesting. Any progress here might give us

a broader understanding how to analyze EAs using crossover or

non-random initializations.

REFERENCES
[1] Anne Auger and Benjamin Doerr (Eds.). 2011. Theory of Randomized Search

Heuristics. World Scientific Publishing.

[2] Axel de Perthuis de Laillevault, Benjamin Doerr, and Carola Doerr. 2015. Money

for nothing: speeding up evolutionary algorithms through better initialization. In

Genetic and Evolutionary Computation Conference, GECCO 2015. ACM, 815–822.

[3] Benjamin Doerr. 2020. Exponential upper bounds for the runtime of randomized

search heuristics. In Parallel Problem Solving From Nature, PPSN 2020, Part II.
Springer, 619–633.

[4] Benjamin Doerr. 2020. Probabilistic tools for the analysis of randomized opti-

mization heuristics. In Theory of Evolutionary Computation: Recent Developments
in Discrete Optimization, Benjamin Doerr and Frank Neumann (Eds.). Springer,

1–87. Also available at https://arxiv.org/abs/1801.06733.

[5] Benjamin Doerr. 2021. Runtime analysis of evolutionary algorithms via symmetry

arguments. Information Processing Letters 166 (2021), 106064.
[6] Benjamin Doerr and Carola Doerr. 2016. The impact of random initialization on

the runtime of randomized search heuristics. Algorithmica 75 (2016), 529–553.
[7] Benjamin Doerr and Frank Neumann (Eds.). 2020. Theory of Evolutionary

Computation—Recent Developments in Discrete Optimization. Springer. Also avail-
able at https://cs.adelaide.edu.au/~frank/papers/TheoryBook2019-selfarchived.

pdf.

[8] Benjamin Doerr and Madeleine Theile. 2009. Improved analysis methods for

crossover-based algorithms. In Genetic and Evolutionary Computation Conference,
GECCO 2009. ACM, 247–254.

[9] Thomas Jansen. 2013. Analyzing Evolutionary Algorithms – The Computer Science
Perspective. Springer.

[10] Frank Neumann and Carsten Witt. 2010. Bioinspired Computation in Combinato-
rial Optimization – Algorithms and Their Computational Complexity. Springer.

[11] Pietro S. Oliveto, Dirk Sudholt, and Carsten Witt. 2020. A tight lower bound on

the expected runtime of standard steady state genetic algorithms. In Genetic and
Evolutionary Computation Conference, GECCO 2020. ACM, 1323–1331.

[12] Pietro S. Oliveto and Carsten Witt. 2011. Simplified drift analysis for proving

lower bounds in evolutionary computation. Algorithmica 59 (2011), 369–386.
[13] Pietro S. Oliveto and Carsten Witt. 2015. Improved time complexity analysis of

the simple genetic algorithm. Theoretical Computer Science 605 (2015), 21–41.
[14] Dirk Sudholt. 2013. A new method for lower bounds on the running time of

evolutionary algorithms. IEEE Transactions on Evolutionary Computation 17

(2013), 418–435.

[15] Andrew M. Sutton and Carsten Witt. 2019. Lower bounds on the runtime of

crossover-based algorithms via decoupling and family graphs. In Genetic and
Evolutionary Computation Conference, GECCO 2019. ACM, 1515–1522.

[16] Carsten Witt. 2018. Domino convergence: why one should hill-climb on linear

functions. In Genetic and Evolutionary Computation Conference, GECCO 2018.
ACM, 1539–1546.

24

https://arxiv.org/abs/1801.06733
https://cs.adelaide.edu.au/~frank/papers/TheoryBook2019-selfarchived.pdf
https://cs.adelaide.edu.au/~frank/papers/TheoryBook2019-selfarchived.pdf

	Abstract
	References

