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Abstract
Multiobjective evolution and competitive coevolution are sub-

fields of evolutionary computation which each significantly com-
plicate the concept of fitness. Together, these make multiobjective
competitive coevolution very difficult to work with by combining
multiple objective values with non-absolute fitness, preventing the
use of many established techniques for improving performance in
multiobjective or competitive coevolutionary algorithms. Nonethe-
less, multiobjective scenarios arise frequently in competitive coevo-
lution, such as whenever coevolving agents must consider costs
for their actions. This paper proposes a new evaluation method of
pairing opponents with similar skill levels in each objective, so that
evaluations more efficiently distinguish the performance of similar
individuals. This is enabled through the use of per-objective Elo
ratings as a surrogate fitness function that prevents bias against
individuals assigned stronger opponents. Ratings can further be
assigned for asymmetric, non-zero-sum objectives such as cost,
allowing individuals to be paired with opponents that incidentally
challenge those asymmetric objectives. Mixed results are presented,
showing significant benefits from pairing similar opponents, but
finding that the use of Elo rating instead of raw fitness harms
evolution. A novel statistical test for comparing multiobjective
coevolutionary algorithms is also introduced.
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1 Introduction
This paper introduces a novel method of sampling opponents in

competitive coevolutionary algorithms by pairing solutions with
opponents found to have similar skill levels in past evaluations
(Similar-Strength Opponent Sampling, SSOS). This is intended to
reduce the number of needed evaluations per generation by more ef-
ficiently distinguishing the skill levels of similar opponents. Biasing
opponent selection biases fitness values as well, so we apply the Elo
rating system [3] as a surrogate to get an absolute fitness measure.
For each unique objective, each individual is assigned a separate Elo
rating. Even in asymmetric games, individuals still receive ratings
for opponents’ objectives, representing their ability to challenge
that objective despite lacking selective pressure to do so. As a result,
Elo-Based Similar-Strength Opponent Sampling (EBSSOS) can be
applied to games that other methods are inapplicable to due to their
focus on single-objective, zero-sum games.

2 Elo Rating System
The Elo rating system was originally developed by Arpad Elo

[3] for rating the skill level of chess players. We employ a method
provided by Elo to calculate ratings for a group of unrated players,
referred to as “the method of successive approximations”. Given a
previous rating estimate for the population, each individual’s rating
estimate can be updated by the following:

𝑅𝑝 = 𝛾 · 𝑅𝑐 + 200 · log√10 (
𝑃

1 − 𝑃 ) (1)

where 𝑅𝑝 is the new rating estimate, 𝑅𝑐 is the average of the rating
estimates of all that individual’s opponents, 𝑃 is the average of the
scores that individual has achieved (normalized to [0, 1]), and 𝛾
is a decay value added to prevent divergence for low numbers of
games, set to 0.9. We repeat these updates until the average change
in ratings between iterations is below a threshold of 0.1. These
parameters were found to produce stable ratings quickly.

3 Problem Domain
We evaluate our algorithm in a two-agent predator-prey envi-

ronment. Predator-Prey games are common for testing competitive
coevolutionary algorithms, allowing complex behaviors despite
their simplicity [1, 5]. Our environment consists of agents which
move at fixed speeds, and are controlled by selecting an angle to
move for each timestep. Agents are circular with a radius of 0.1,
where 1.0 is the radius of the circular world. If the predator overlaps
the prey, or the prey survives for 200 time steps, the game ends.
Moves directed outside the outer edge are projected towards the
center of the world to the nearest valid location. Agents start at
opposite sides, half-way to the edge. We use a predator speed of
0.06, and a prey speed of 0.10, selected through tuning for fairness.
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Predator-Prey games typically have a single zero-sum objective:
the duration that the prey survives. In order to test multiobjective
evolution, the predator and prey are each given a region of the
map that fulfills a non-zero-sum “comfort” objective: the prey must
minimize its average distance from the center of the world, and the
predator must minimize its average distance to the edges. These
objectives are chosen to conflict with the dominant strategies for the
pursuit-evasion objective. Agents have no incentive to degrade their
opponents’ comfort objective. Despite this, SSOS assigns predators
and prey opponents which incidentally challenge these objectives.

4 Methodology
Independent Elo ratings are maintained for each objective, per

individual, including opponents’ objectives. Evaluations are per-
formed in several rounds, where every individual is assigned one
opponent per round. Opponents are chosen to be close in Elo rat-
ing, maximizing the information about skill differences gained
from each evaluation, and providing opponents that incidentally
challenge individuals’ asymmetric objectives. We aim to minimize
the sum of squared distances in per-objective Elo ratings between
paired individuals. This is accomplished by a hill-climber that ran-
domly swaps pairings and reverses those that increase cost, ter-
minating after 200 iterations without improvement. After a round
of evaluations has been completed, the recorded objectives are
normalized to [0, 1] on the range of objective values yet observed.
From these values, their Elo ratings are recalculated through the
method of successive approximations, with an initial estimate of
0. These new ratings include transitive relationships encoded in
their opponents’ Elo rating from past evaluations. After all rounds
are completed, the final Elo ratings are returned as the individuals’
fitness. We hypothesize that this will decrease the amount of evalu-
ations per generation necessary to achieve healthy coevolution.

4.1 Evolutionary Design
Our predator and prey agents are strongly-typed genetic pro-

gramming trees [4] which return an angle to move at for each
timestep, using angle and distance types. As sensors, agents have
the distance and angle to the center of the world, to the edge, and
to their opponent, as well as the past move angles made by them
and their opponent, enabling predictive behavior. These sensors
are combined through basic arithmetic functions, scalar multiplica-
tion of angles with distances, and a function which returns one of
two angles based on which of two distances is larger. Agents are
evolved through NSGA-II [2] for 50 generations, using a (50+150)
population model, a mutation rate of 50%, and trees initialized with
ramped half-and-half to a height between 3 and 7.

4.2 Comparison Methodology
Given two runs of different multiobjective coevolutionary al-

gorithms, we sample the 𝑘 top individuals from each run’s popu-
lation(s), sorting by NSGA-II-styled crowded comparison. These
individuals are entered into a round-robin tournament. The two
runs are each scored by the fraction of their own individuals in
the newly-calculated Pareto fronts for each population. A run is
considered superior if it makes up the majority of the new Pareto
fronts, indicating that its best solutions mostly dominate its oppo-
nent’s. Statistical analysis is performed over 100 runs, where each
run from the first configuration is compared against each run in the

Paired Elo vs. Unpaired Elo
5 Opponents per Individual

Means 71.6% vs. 28.4%
Best Paired Elo

Paired Elo vs. No Elo
5 Opponents per Individual

Means 30.9% vs. 69.1%
Best No Elo

Unpaired Elo vs. No Elo
5 Opponents per Individual

Means 15.2% vs. 84.8%
Best No Elo

Paired Elo vs. Unpaired Elo
10 Opponents per Individual

Means 80.7% vs. 19.3%
Best Paired Elo

Paired Elo vs. No Elo
10 Opponents per Individual

Means 41.2% vs. 58.8%
Best No Elo

Unpaired Elo vs. No Elo
10 Opponents per Individual

Means 14.0% vs. 86.0%
Best No Elo

Paired Elo vs. Unpaired Elo
20 Opponents per Individual

Means 79.8% vs. 20.2%
Best Paired Elo

Paired Elo vs. No Elo
20 Opponents per Individual

Means 43.4% vs. 56.6%
Best No Elo

Unpaired Elo vs. No Elo
20 Opponents per Individual

Means 17.3% vs. 82.7%
Best No Elo

Table 1: Experimental results displaying the average frac-
tion of dominant strategies in pairwise comparisons.

second configuration, and their resulting scores summed per-run.
Two-tailed F-tests and t-tests are then be used to measure whether
one configuration produces a significantly higher average share of
non-dominated solutions against runs from its opponent.

5 Results and Conclusions
We compare EBSSOS with 𝐾 rounds of evaluations (“Paired Elo”)

against two other methods of sampling: 𝐾-random opponent sam-
pling (“No Elo”) and 𝐾-random sampling with Elo rating as fitness
(“Unpaired Elo”), with 𝐾 = 5, 10, and 20. “Unpaired Elo” allows
the effects of SSOS to be separated from the direct effects of using
Elo rating over raw fitness. Results are shown in Table 1. All re-
sults are significant (p < 0.05). “Paired Elo” (EBSSOS) was found
to significantly underperform “No Elo”. However, the remaining
results indicate a complex relationship. Compared to “Unpaired
Elo”, “Paired Elo” produced a significant improvement, demonstrat-
ing that the SSOS component of this algorithm is itself effective.
Comparing “Unpaired Elo” to “No Elo” shows that using Elo rat-
ing as a surrogate fitness function is harmful enough to cancel
out the benefits of SSOS. We suggest that Elo’s transitive model
does not sufficiently model relative agent performances. However,
SSOS isn’t reliant upon Elo rating specifically, it only needs an
unbiased method of scoring individuals after biased pairings. As
a result, techniques besides Elo that more effectively model these
relationships might provide more useful inferences of fitness.
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