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ABSTRACT

Modern machine learning methods highly depend on their hyper-
parameter configurations for optimal performance. A widely used
approach to selecting a configuration is using default settings, of-
ten proposed along with the publication of a new algorithm. Those
default values are usually chosen in an ad-hoc manner to work
on a wide variety of datasets. Different automatic hyperparameter
configuration algorithms which select an optimal configuration per
dataset have been proposed, but despite its importance, tuning is
often skipped in applications because of additional run time, com-
plexity, and experimental design questions. Instead, the learner is
often applied in its defaults. This principled approach usually im-
proves performance but adds additional algorithmic complexity and
computational costs to the training procedure. We propose and study
using a set of complementary default values, learned from a large
database of prior empirical results as an alternative. Selecting an ap-
propriate configuration on a new dataset then requires only a simple,
efficient, and embarrassingly parallel search over this set. To demon-
strate the effectiveness and efficiency of the approach, we compare
learned sets of configurations to random search and Bayesian opti-
mization. We show that sets of defaults can improve performance
while being easy to deploy in comparison to more complex methods.
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1 INTRODUCTION

Hyperparameter settings for machine learning algorithms are of-
ten optimized via hyperparameter optimization e.g. using random
search, Bayesian optimization, or meta learning. While not tuning
parameters at all can be detrimental, defaults provide a simple and
fast fall-back, that is easy to implement and use while providing
strong anytime performance. We describe a general, learner-agnostic
procedure, to (meta-)learn not one, but a (sequential) list of default
configurations, which complement each other. These sets are ordered
so that the earlier elements in the sequence provide greater benefits
on average.! While traditional optimization methods are to be pre-
ferred when time and expertise are available, we conjecture that sets
of defaults work well across a large variety of datasets. We leverage a
large set of historic performance results of prior experiments that are
available on OpenML [4]. Several approaches attempt to combine
the paradigms of meta-learning and hyperparameter optimization,
for example by warm starting hyperparameter optimization meth-
ods [2, 5]. While all these methods yield convincing results, they are
by no means easy to deploy. Similar to our work, Wistuba et al. [6]
learn a set of defaults from a fixed grid of evaluations, requiring
hyperparameters evaluated on a grid across several datasets scaling
exponentially with hyperparameter dimensionality. This is practi-
cally infeasible when there are large numbers of hyperparameters.

2 METHOD

Consider a target variable y, a feature vector x, and an unknown joint
distribution P on (x, y), from which we have sampled a i.i.d dataset
D. A machine learning algorithm A (D) learns a prediction model
f (x). Ay is controlled by a multi-dimensional hyperparameter con-
figuration A € A of length D, where A; is usually a bounded real or
integer interval, or a finite set of categorical values. We are interested
in estimating the expected risk of the inducing algorithm w.r.t. A
on new data, also sampled from P:Rp(A) = Ep (L(y, Ay (D)(x))),
where the expectation above is taken over all data sets O from ¥ and
the test observation (x,y). Thus, Rp (A) quantifies the expected pre-
dictive performance associated with a hyperparameter configuration
A for a given data distribution, learning algorithm and performance
measure. In practice, given K different data sets we define K hy-
perparameter risk mappings: R (1) = Ep, (L(y, Ay (D)(x))) and
the average risk of A over K data sets: R(A) = % Zle Ri.(A). Our
goal now is to find a fixed-size set Ay, of size T, that works well
over a variety of datasets, in the sense that for each dataset D, Ager
contains at least one configuration that works well on D. The risk
of a set of configurations Agef of size T, aggregation function h (e.g.
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Figure 1: Defaults (red), random search (blue) and Bayesian optimization (green) across several budgets for Adaboost (left), Random

Forest (middle) and SVM (right)

mean) and datasets 1,..., K is then given by:
G(Agef) = h ( min Ry(As),..., min_Rg(A;))
j=1,...n t=1,...,T

Finding an optimal subset A4er defines a (meta)-learning problem,
that can be solved exactly or using a greedy approximation.

The exact version can be formulated as an instance of Mixed
Integer Programming. In order to obtain a set of n defaults, the goal
is to minimize

K
2.

k=1

M
D dm=n
m=1
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Vk VM Y = m = D ¢ Vk:Z‘I’k,m=l
seQ(k,m) -1
After the optimization procedure, element ¥ ,, will be 1 if and only
if configuration A, has the lowest risk on distribution i out of all
the configurations that are in the set of defaults. ¢, is an auxiliary
variable. Since the exact solution is computationally prohibitively

(€]

Mz

\Ijk,m . Rk (Am)
1

3
I

subject to

Vk:Vm: ¥, 20

expensive, we adopt a greedy procedure fort=1,...,T:
Adet,s = argmin G({A} U Adef—1) (2)
AeA
Adefr = {Adet 1, - - Adet (3)

where Ager,o = 0, and the final solution Agef = Agef,7- It is possible
to estimate Ry (A1) empirically using cross-validation, but since this is
computationally expensive, we employ surrogate models that predict
the performance for a given hyperparameter configuration resulting
in a fast approximate way to evaluate performances. This approach
can be extended to a set of defaults across algorithms.

3 EXPERIMENTAL EVALUATION

We estimate the generalization performance of our approach on fu-
ture datasets by running a leave-one-dataset-out CV scheme over K
datasets, estimating performances for each held-out dataset using
outer 10-fold CV and nested 5-fold CV for choosing the hyperpa-
rameter. We compare to random search with several budgets and
Bayesian optimization with 32 iterations. We use +137.000 experi-
mental results available on OpenML [4] to evaluate the lists of de-
faults on three algorithms from scikit—-1learn and 100 datasets
from the OpenML100 [1]. We evaluate using Adaboost (5), SVM
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(6), and random forest (6 hyperparameters) optimizing predictive
accuracy. Hyperparameters and their respective ranges are the same
as used in [3]. Figure 1 presents the results of the set of defaults
obtained by our approach and baselines across 3 algorithms normal-
ized to [0, 1] per algorithm and task and aggregate using the mean.
For defaults and random search more iterations strictly improves
performance. As expected, random search with only 1 or 2 iterations
performs poorly, while Bayesian optimization is often among the
best strategies. We further observe that using only a few defaults is
already competitive with Bayesian optimization and higher budget
random search, often competitive with random search with 4 — 8
times more budget. We note that using sets of defaults is especially
worthwhile when either computation time or expertise on hyper-
parameter optimization is lacking. Especially in the regime of few
function evaluations, sets of defaults seem to work well and are
statistically equivalent to state-of-the-art techniques. A potential
drawback is that the defaults are optimal with respect to a single
metric such as accuracy or AUC, and thus might need to be used
separately for different evaluation metrics. Our results can readily
be implemented in machine learning software as simple, hard-coded
lists of parameters. These will require less knowledge of hyperpa-
rameter optimization from the users than current methods, and lead
to faster results in many cases.
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