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ABSTRACT
A key challenge in the application of evolutionary algorithms in
practice is the selection of an algorithm instance that best suits the
problem at hand. What complicates this decision further is that
di�erent algorithms may be best suited for di�erent stages of the op-
timization process. Dynamic algorithm selection and con�guration
are therefore well-researched topics in evolutionary computation.
Two di�erent settings are classically considered: hyper-heuristics
and parameter control studies typically assume a setting in which
the algorithm needs to be chosen and adjusted during the run, with-
out prior information, other approaches such as hyper-parameter
tuning and automated algorithm con�guration assume the possi-
bility of evaluating di�erent con�gurations before making a �nal
recommendation. In practical applications of evolutionary algo-
rithms we are often in a middle-ground between these two settings,
where one needs to decide upon the algorithm instance before the
run (“oneshot” setting), but where we have (possibly lots of) data
available on which we can base an informed decision.

We analyze in this work how such prior performance data can
be used to infer informed dynamic algorithm selection schemes for
the solution of pseudo-Boolean optimization problems. Our speci�c
use-case considers a family of genetic algorithms.
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1 INTRODUCTION
It is very well known that di�erent algorithms or di�erent instanti-
ations of the same algorithm are best suited for di�erent problems
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and even for di�erent stages of the optimization process. Automated
algorithm selection [3] as well as dynamic parameter selection [2]
are therefore intensively studied meta-optimization problems in
evolutionary computation. However, the former has a strong re-
quirement on being able to run di�erent algorithms (or algorithm
con�gurations) prior to making a decision which algorithm to apply
to the problem at hand. Parameter control and related concepts
(including hyper-heuristics, adaptive operator control, etc.), in con-
trast, assume that the selection has to be made on the �y, without
leveraging existing data from previous or related runs. With the
rise of arti�cial intelligence methods, evolutionary computation is
currently facing a paradigm shift, in that we aim to actively exploit
existing performance data to select which algorithms to apply, and
how to possibly adjust them during the run. We are, however, still
far from achieving a fully automated informed online selection.

We study in this work how well we can predict from existing
performance data which algorithm instances to combine for a given
problem at hand. While we do allow for switching between dif-
ferent algorithms, the decision when to switch has to be made
prior to the run, and depends, in our case, on the solution quality
of the evaluated solution candidates. More precisely, we use the
benchmarking data from our study [7] as starting point to inves-
tigate, for each of the 25 individual problems, how well we can
predict which single-switch algorithm combinations would show
good performance. For some functions we easily obtain algorithm
combinations that outperform the best static algorithms. For other
functions the results are rather mixed. On three functions, none of
the 100 tested single-switch algorithm combinations was able to
outperform the best static solver. The prediction quality of the ap-
proach suggested in [4] varies a lot between the di�erent functions.
While for LeadingOnes, for example, the performance predictions
are rather accurate, large discrepancies between predicted and ac-
tual performance can be observed for more complex function. In
particular for multi-model functions the approach can get trapped
by a �rst algorithm that is very e�cient in converging to a local
optimum from which the second algorithm cannot escape easily.

Data availability: Our data is available at [6].

2 INFORMED 1-SWITCH DYNAMIC
ALGORITHM SELECTION

We take as input the benchmarking data from [7], which comprise
detailed performance records for 80 genetic algorithms on the 25
functions suggested in [1]. We focus on expected running time
(ERT) as performance measure, i.e., the average time needed by an
algorithm to reach a given solution quality, the target value, denoted
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Figure 1: Relative ERT values of 100 1-switch combinations
(�1,�2,qB ) (3⇢') ) for 23 out of 25 IOHpro�ler problems in
dimension 3 = 100, compared to the ERT of the best static
GAs according to [7] (B⇢') ). Each black dot represents one
ERT value. The relative deviation is calculated by (3⇢') �
B⇢') )/B⇢') so that negative values (below the red line) cor-
respond to an advantage of the dynamic combination over
the best static algorithm. We only display values between
�0.5 and 0.5 so that the results of F24-F25 are missing here
with values larger than 1. All ERT values are based on 100
independent runs.

by q 5 in the following. More precisely, the ERT(�, %,q) of an algo-

rithm� on problem % for targetq is computed as
ÕA

8=1 min{C8 (�,%,q),⌫ }ÕA
8=1 1{C8 (�,%,q)<1} ,

where ⌫ is the total budget of function evaluations that the algo-
rithm can perform, C8 (�, %,q) is the number of function evalua-
tions that were needed in the 8-th run to reach the target value
(C8 (�, %,q) = 1 if none of the evaluated solutions satis�es this
quality constraint), and 1(E) = 1 if event E is true and 1(E) = 0,
otherwise.

Following the approach suggested in [4] we compute a “the-
oretical” ERT value for all combinations (�1,�2,qB ), where �1
is the �rst algorithm, �2 the second, and qB the target value at
which we switch from �1 to �2. To this end, we simply compute
ERT(�1, %,qB ) + ERT(�2, %,q 5 ) � ERT(�2, %,qB ), where all these
ERT values are based on the performance recodes provided in [7].
In total, we consider 42 possible switching points qB , which we se-
lect within the interval [q<,q 5 ] between the smallest �tness value
q< of the problem and the best found target q 5 according to [7,
Table 1]. We consider evenly spaced targets, for the original and for
the log-scaled interval, respectively. For each problem, we consider
only algorithms that hit the �nal target value with probability at
least 80% according to the data from [7]. Using this approach, we
select for each problem the 100 best combinations (�1,�2,qB ) and
we then run the combination 100 independent times on the problem
that they have been selected for.

In Figure 1 we compare the so-obtained ERT values with the
best ERT value reported in [7], which we refer to as the best static
algorithm (BSA). For combinations (�1,�2,qB ) for which the parent
population sizes `1 of �1 is larger than the parent population size
`2 of�2 we selected the best `2 points to initialize the parent popu-
lation of �2. Where `1 < `2, the new parent population comprises

all `1 points, as additional b`2/2c � `1 copies of the best points, and
d`2/2e randomly added individuals.

For some of the problems (e.g., F1, F2, F7, F11-14, F16-23)), the
ERT of several combinations (�1,�2,qB ) outperform that of the
BSA. For other functions, and in particular for F10, F24, and F25,
none of the combinations (�1,�2,qB ) is able to outperform the
BSA. A few reasons and more detailed analyses can be found in the
extended version of this poster, available at [5].

3 FUTUREWORK
We have investigated in this work possibilities to leverage existing
benchmark data to derive switch-once dynamic algorithm selection
policies. While for some cases the “theoretical” approach suggested
in [4] could indeed predict combinations that outperformed the
best static solver, the results are less positive for others. One ob-
stacle that hinders an accurate performance prediction are local
optima: when the �rst algorithm is very good at converging to a
local optimum, it is likely to be chosen as �1. It is then important,
however, to continue the search with an algorithm that has a good
enough exploration power to escape the local optimum. This ability,
however, seems hard to infer from the pure performance pro�les,
and may require a “human in the loop”.

Going forward, our long-term goal is the automated detection of
situations in which switching from one algorithm to another one
can be bene�cial. To this end, we will further investigate e�cient
strategies to warm-start the algorithms by actively using the infor-
mation accumulated thus far. In the here-presented study, we have
used ERT values as performance measure and as indicator to select
which algorithm combinations to execute. In future work we will
consider other performance measures, and in particular those that
measure the anytime performance of the algorithms.
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