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ABSTRACT
One of the most common problem-solving heuristics is by analogy.
For a given problem, a solver can be viewed as a strategic walk
on its fitness landscape. Thus if a solver works for one problem,
it is anticipated that it will be effective for problems within the
same category whose fitness landscapes essentially share structural
similarity with each other. However, due to the black-box nature, it
is far from trivial to infer such similarity in real-world scenarios.
To bridge this gap, this paper proposes two alternative approaches
to empirically investigate the potential existence of structural simi-
larity among different fitness landscapes. Specifically, we pick up
three classic combinatorial optimization problems to constitute
the benchmark set. We apply a local optima network construction
routine to build a coarse-grained model to represent the fitness
landscapes of different problems at various dimensions. Thereafter,
we apply a graph embedding method, to empirically investigate the
potential existence of correlations with respect to different local
optima networks. From our empirical results, we are exciting to
find some evidence of the existence of similarity not only for a
given problem with various dimensions but also across different
problems.
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1 INTRODUCTION
The original idea of fitness landscape dates back to 1932 when
Wright pioneered this concept in evolutionary biology [9]. In re-
cent two decades and beyond, there have been many efforts devoted
to developing computational models of fitness landscape [5], among
which local optima networks (LONs) [3] have become the most
popular one in the meta-heuristic community [4]. LONs are rooted
from the study of energy landscapes in chemical physics [6] and its
basic idea is to model the fitness landscape as a graph or network.
In particular, the vertices of a LON are local optima (either minima
or maxima depending on the problem definition) and the edges
indicate certain search dynamics of a meta-heuristic algorithm, i.e.,
the transition from one local optimum to another. Since LONs are
able to capture various characteristics of the underlying landscape
(e.g., the number of local optima, their distribution and connec-
tivity pattern), they are powerful tools for both fitness landscape
analysis and visualization [2]. Metrics developed for analyzing and
understanding graphs and/or complex networks are in principle
useful for enabling the quantitative understanding of the struc-
tural characteristics of LONs. In addition, such metrics can then
be used to composite quantitative features that are applicable for a
wider range of applications related to automatic algorithm selection
and/or configuration [7].

In practice, one of themost common problem-solving approaches
is by analogy. Its basic assumption is that if a black-box optimiza-
tion problems (BBOPs) solver is effective for one problem, we can
expect its effectiveness for solving other problems belonging to the
same category whose fitness landscape essentially share structural
similarity with each other. In other words, the strategic walk on the
fitness landscape induced by the solver may be extended to fitness
landscapes of similar problems that are anticipated to share cer-
tain patterns or sub-structures but vary in different size or volume.
Thus the inference of such similarity would not only deepen our
understanding of the solver’s behavior but also facilitates the design
the BBOP solvers with respect to its fitness landscape potentially.
However, it is in practice far from trivial to infer such similarity
when encountering BBOPs. To the best of our knowledge, there is
no dedicated research to investigate the correlations of the existing
fitness landscape analysis literature. To bridge this gap, this paper
proposes to use the technique from graph theory to empirically
investigate the potential existence of correlation among different
fitness landscapes. Specifically, we pick up three classic combina-
torial optimization problems to constitute the benchmark set. We
apply a LON construction routine to build a coarse-grained model
to represent the fitness landscapes of different problems at various
dimensions. Thereafter, we apply a graph embedding method, to
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empirically investigate the potential existence of structural similar-
ity among different LONs. From our empirical results, we find some
evidence that supports the existence of correlations not only for a
given problem with various dimensions but also across different
problems.

2 EXPERIMENTAL SETUP
This paper picks up three classic combinatorial optimization prob-
lems, including the number partitioning problem (NPP), traveling
sales problem (TSP) and 0− 1 knapsack problem (KP), to composite
the benchmark set. They are all NP-hard problems and have been
widely used in the fitness landscape analysis literature.

Given the intrinsic complexity of fitness landscapes (e.g., a large
number of local optima and their complex connectivity), LONs can
be too complex to directly evaluate any structural information and
compare the similarity. Instead of taking the whole graph as an
integral entity, it might bemore plausible to learn a feature represen-
tation (or spectrum) that captures certain topological sub-structure
characteristics. In particular, this feature representation is invariant
under graph isomorphism. In this paper, we consider applying a
state-of-the-art graph embedding approach, FGSDmethod in partic-
ular [8], to serve this purpose. The FGSD method provides a simple
yet powerful graph feature representation based on the multiset of
node pairwise distances, providing that it exhibits certain unique-
ness, stability, sparsity properties and is computationally fast with
a O(n2) complexity where n is the number of vertices in a graph.
In a nutshell, the FGSD method consists of two major steps. It first
calculates the Moore-Penrose spectrum of the normalized Laplacian
to capture certain inherent atomic sub-structures of the underlying
graph. Then the histograms of the spectrum features are calculated
to constitute a fixed length feature vector representations.

In this paper, we consider Pearson correlation coefficient (PCC) [1]
to help quantify the similarity of different dimensions LONs. PCC is
used to measure the statistical association between two continuous
variables. Its value ranges from −1 to 1. In particular, a larger PCC
value indicates a stronger correlation. Given two random variables
x1 and x2, their PCC is calculated as:

PCC(x1, x2) = cov(x1, x2)
σ (x1)σ (x2)

, (1)

where cov(·, ·) evaluates the covariance and σ (·) represents the
standard deviation.

3 RESULTS
From this PCC heatmap matrix, we observe some clear divisions
of blocks. Specifically, the LONs of NPP with d ≤ 20 have been
highly correlated with those of 0 − 1 KP with d ≤ 35; while the
LONs of higher dimensional NPP (i.e., with d ≥ 25) have shown
significant correlations with the LONs of TSP across all dimensions.
On the other hand, the correlation between TSP and 0 − 1 KP is
rather marginal until the dimension d goes up to 50. Nevertheless,
this observation still agrees with those obtained from the statistical
analysis of four network metrics, i.e., there do exist certain patterns
or sub-structures sharing across the fitness landscapes of different
combinatorial optimization problems. In particular, since the fitness
landscapes of TSP always share certain similar patterns across

Figure 1: Heatmap of PCC values for cross comparison of
NPP, TSP and 0 − 1 KP at all dimensions.

different dimensions, their structural similarity with the fitness
landscapes of other problems are also across all dimensions.

4 CONCLUSIONS
In this paper, we empirically investigate the potential existence of
correlations among the fitness landscapes of different combinatorial
optimization problems.We use a graph embedding method from the
deep learning literature that compresses LONs into feature vectors
with a fixed length and evaluate their inter-correlations. From our
empirical results, we find some evidence that support the existence
of correlations among different LONs.
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