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ABSTRACT
Previous theory work on multi-objective evolutionary algorithms
considers mostly easy problems that are composed of unimodal
objectives. This paper takes a first step towards a deeper under-
standing of how evolutionary algorithms solve multi-modal multi-
objective problems. We propose the OneJumpZeroJump problem,
a bi-objective problem with single objectives isomorphic to the
classic jump function benchmark. We prove that the simple evolu-
tionary multi-objective optimizer (SEMO) cannot compute the full
Pareto front. In contrast, for all problem sizes n and all jump sizes
k ∈ [4..n2 −1], the global SEMO (GSEMO) covers the Pareto front in
Θ((n−2k)nk ) iterations in expectation. To improve the performance,
we combine the GSEMO with two approaches, a heavy-tailed mu-
tation operator and a stagnation detection strategy, that showed
advantages in single-objective multi-modal problems. Runtime im-
provements of asymptotic order at least kΩ(k ) are shown for both
strategies. Our experiments verify the substantial runtime gains
already for moderate problem sizes. Overall, these results show
that the ideas recently developed for single-objective evolution-
ary algorithms can be effectively employed also in multi-objective
optimization.

This Hot-off-the-Press paper summarizes “Theoretical Analyses of
Multi-Objective Evolutionary Algorithms on Multi-Modal Objectives”
by B. Doerr and W. Zheng, which has been accepted for publication
in AAAI 2021 [9].
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SUMMARY OF OUR RESULTS
Many real-world applications contain multiple conflicting objec-
tives. For such problems, a single best solution cannot be deter-
mined. Therefore, the task is to compute a set of solutions each of
which cannot be improved without worsening in at least one ob-
jective (Pareto optima). With their population-based nature, multi-
objective evolutionary algorithms (MOEAs) have been successfully
applied here [25]. Similar to the situation in the theory of single-
objective evolutionary algorithms, rigorous theoretical analyses of
MOEAs fall far behind their successful applications in practice.

In order to reveal the working principles of MOEAs, the research
has resorted to multi-objective, especially bi-objective, counter-
parts of well-analyzed single-objective benchmark functions used
in evolutionary computation theory. For example, in the problems
COCZ [18] and OneMinMax [13], the two objectives are both (con-
flicting) variants of the classic OneMax benchmark. The classic
benchmark LeadingOneswas used to construct the LOTZ [17] and
WLPTNO [22] problems. These multi-objective benchmark prob-
lems are among the most intensively studied [2, 6, 7, 12, 15, 16, 20].
We note that these problems are unimodal in the sense that from
each set of solutions P a set P ′ witnessing the Pareto front can
be computed by repeatedly selecting a solution from P , flipping a
single bit in it, adding it to P , and removing dominated solutions
from P . They are thus relatively easy to solve.

As in the theory of single-objective evolutionary computation,
multi-modal problems are much less understood also in the theory
of evolutionary multi-objective optimization. To the best of our
knowledge, there is not a single work discussing in detail how
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MOEAs cope with multimodality. There are works that contain
multimodal problems, but they are using these problems mainly
to study other research questions or the multimodality is only
minor [3, 11, 19, 21].

Our contributions. This work aims at a deeper understanding
howMOEAs cope with multi-objective problems with natural, well-
analyzed, multi-modal objectives. In the theory of single-objective
evolutionary computation, the class of Jump function is a natu-
ral and intensively used multi-modal function class [10] that has
inspired many interesting results including that larger mutation
rates, crossover, and estimation of distribution algorithms as well
as ant-colony optimizers help in the optimization of multi-modal
functions [see, e.g., 1, 4, 5, 8, 14]. Hence, in this paper, we design
a bi-objective counterpart of the Jump function with problem size
n and jump size k , called OneJumpZeroJumpn,k . It consists of one
Jump function w.r.t. the number of ones and one Jump function w.r.t.
the number of zeros. We compute its disconnected Pareto front.

We prove for all n and k ∈ [2..n2 ] that the simple evolutionary
multi-objective optimizer (SEMO) cannot find the Pareto front, but
that the global SEMO (GSEMO) finds the Pareto front in O((n −

2k)nk ) iterations in expectation. We show a matching lower bound
of Ω((n − 2k)nk ) for k ∈ [4..n2 − 1]. Here and in the remainder, the
asymptotic notation only hides constants independent of n and k .

We also consider two approaches that showed advantages in
single-objective multi-modal problems. Via the heavy-tailed mu-
tation proposed in [8], we improve the expected runtime of the
GSEMO by a factor of kΩ(k ) to O((n − 2k)(en)k/kk+0.5−β ), where
β > 1 is the power-law distribution parameter. Via a suitable adapta-
tion of the stagnation detection strategy from [23] tomulti-objective
optimization, we obtain an expected runtime ofO((n−2k)(en)k/kk ),
again a kΩ(k ) factor improvement over the classic GSEMO and re-
ducing the runtime guarantee for the heavy-tailed GSEMO by a
(small) factor ofΩ(kβ−0.5). Our experiments show that these are not
only asymptotic differences, but that roughly a factor-5 speed-up
with heavy-tailed mutation and a factor-10 speed-up with stagna-
tion detection can be observed already for jump size k = 4 and
problem sizes n between 10 and 50.

Impact and further discussion. Overall, this work suggests
that the recently developed ideas to cope with multimodality in
single-objective evolutionary optimization can be effective in multi-
objective optimization as well. In this first work in this direction,
we only concentrated on mutation-based algorithms. The theory
of evolutionary computation has also observed that crossover and
estimation-of-distribution algorithms can be helpful in multi-modal
optimization. Investigating to what degree these results extend into
multi-objective optimization is clearly an interesting direction for
future research.

Also, we only covered very simple MOEAs in this work. Analyz-
ing more complex MOEAs such as the successful decomposition-
based MOEA/D [15, 16, 19, 24] would be highly interesting. This
would most likely require an adaptation of our benchmark problem.
Since the difficult-to-find extremal points of the front are just the
solutions of the single-objective sub-problems, and thus the two
problems that naturally are part of the set of subproblems regarded
by the MOEA/D, this algorithm might have an unfair advantage on
the OneJumpZeroJump problem.
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