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ABSTRACT
Genetic programming (GP) based symbolic regression is a stochas-
tic, high-variance algorithm. Its sensitivity to changes in training
data is a drawback for practical applications.

In this work, we analyze empirically the variance of GP models
on the PennML benchmarks. We measure the spread of model
predictions when models are trained on slightly perturbed data.
We compare the spread of models from two GP variants as well as
linear, polynomial and random forest regression models.

The results show that the spread of models from GP with local
optimization is significantly higher than that of all other algorithms.
As a side effect of our analysis, we provide evidence that the Pen-
nML benchmark contains two groups of instances (Friedman and
real-world problem instances) for which GP performs significantly
different.

CCS CONCEPTS
• Computing methodologies → Supervised learning by regres-
sion; Optimization algorithms; • Software and its engineering
→ Genetic programming;
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1 INTRODUCTION
Symbolic regression is a machine learning task wherein we search
for a mathematical human-readable expression that covers depen-
dencies within data. Especially the human readable representation
is a crucial feature in many applications. However, each GP run
will yield a different model due to its stochasticity. This puts prac-
titioners in the dilemma, that they have to run GP multiple times
but might end up with several models that seem equally suitable.

In this work we analyze how much the predictions of GP models
from different GP runs differ from each other. We analyze, if GP
finds models that produce completely dissimilar outputs for the
same inputs, or if the found models differ just in their structure but
provide similar prediction behavior. We introduce the phenotypical
spread as a new measure for variance of an algorithm. We apply
it on regression models from GP, GP with nonlinear least squares
optimization (GP NLS) [3], linear regression (LR), polynomial re-
gression (PR) and random forest regression [1]. The models are
trained on the problems of the the PennML benchmark library [4]
– a large set of machine learning benchmark problem instances.

2 PHENOTYPICAL SPREAD
The phenotypical spread describes how far the predictions of a
set of models spread on average on a given dataset. We define
the phenotypical spread 𝑠 (𝒎, 𝐷) as follows: Consider a dataset
𝐷 ∈ R𝑛×𝑑 of 𝑛 observations of 𝑑 features and a set 𝒎 = {𝑚1 ...𝑚𝑘 }
of 𝑘 models. Each model𝑚 𝑗 in𝒎 is applied on every observation in
𝐷 to create a set �̂�𝒊 = {𝑚1 (𝐷𝑖 ) ...𝑚𝑘 (𝐷𝑖 )} of𝑚 predictions for each
observation𝐷𝑖 . We calculate for every observation, how far these𝑚
predictions in �̂�𝒊 spread using the interquartile range IQR(�̂�𝒊). The
phenotypical spread 𝑠 (𝒎, 𝐷) is the average of those 𝑛 interquartile
ranges.

𝑠 (𝒎, 𝐷) = 1
𝑛

𝑛∑︁
𝑖=1

IQR
({
𝑚1 (𝐷𝑖 ) ...𝑚𝑘 (𝐷𝑖 )

})
(1)

We generate for each problem instance a new dataset𝐷 with 1000
samples and calculate 𝑠 (𝒎, 𝐷) for each algorithm. To generate one
sample 𝐷𝑖 in 𝐷 , we select for each feature a random entry of that
feature from the original dataset. Our measure 𝑠 (𝒎, 𝒙) is similar to
the “error due to variance” in the bias/variance decomposition of
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Figure 1: Distribution of relative phenotypical spread. All
values are relative to the values of linear regression models.

the mean squared error in [2]. The major difference is the use of the
interquartile range, which is robust against prediction outliers in
extrapolation. Such outliers can occur because we do not preserve
dependencies between features during the generation of 𝐷 , which
leads to extrapolation when the models 𝒎 are applied.

For each problem instance and algorithm, we tune the algorithms’
hyperparameters with a grid search with a 5-fold cross-validation
on the original dataset. We then train 50 models 𝒎 = {𝑚1 ...𝑚50}
with the best hyperparameter setting. We randomly choose 75%
of the dataset’s observations for the training of each model the
use the remaining 25% as test partition, so that every model is
trained on slightly perturbed data. Both GP flavors use the same
hyperparameter configuration as in [3]. The parameters of the non-
evolutionary algorithms, which are optimized in the grid search
are the following:

• RF with 200 trees,𝑚 ∈ {0.25, 0.5, 0.75}, 𝑟 ∈ {0.1, 0.2, . . . , 0.7}
• PR is implemented as elastic-net regression (cf. [5]) with
polynomial basis function expansion. We tested 𝛼 ∈ {0, 0.5,
1}, 𝜆 ∈ {1 ·10−7, 2.5 ·10−7, 5 ·10−7, 7.5 ·10−7, 1 ·10−6, 2.5 ·10−6
. . . 7.5 · 10−2} and total polynomial degree ∈ {2, 3, 4, 5}. For
instances with > 20 features we limited the degree to 3.

3 RESULTS
Our experiments show that there are clear differences between
two sets of problems in the PennML benchmark suite regarding
both phenotypical spread and prediction accuracy. Figure 1 shows
the distribution of the relative phenotypical spread values for all
algorithms and problem instances. Since the value range of the
phenotypical spread is problem-specific, we relativize the values
of all algorithms to the one of linear regression, so they are on the
same scale. Values for LR are left out as they are always one.

Figure 1 shows that the phenotypical spread of GP NLS models is
much higher than the spread of models from other algorithms in the
Friedman problems. GP and RF provide similar spread in the Fried-
man problems, while PR exhibits slightly higher spread. In contrast,
all algorithms perform similar in the real world problems. Although
GP NLS also has the highest spread among real world problems,
the difference to the other algorithms are less pronounced.

The real world problems also differ from the Friedman problems
concerning prediction error. Figure 3 outlines how all algorithms
provide similar prediction error on the real world problems. LR is
only slightly worse and RF over-fits but still performs competitive

on test. On the Friedman problems, only GP NLS performs well
both in test and training as shown in Figure 2. The other algorithms
achieve only low Pearson’s 𝑅2 values in test there.

Given the clear differences in the modelling results between
the Friedman problems and the real world problems, as well as
the larger number of Friedman problems, algorithm tests on the
whole PennML benchmark library are biased towards the Friedman
problems. Algorithms that excel on the Friedman problems will
also excel when analyzed on all problems. We suggest for future
work to use these two groups of problems separately.
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Figure 2: Median 𝑅2 for Friedman problems.
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Figure 3: Median 𝑅2 for real world problems.
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