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ABSTRACT
When programs are very large and fitness evaluation is fast (e.g. due
to evaluating only a tiny fraction of the program) it can be efficient
to evaluate fitness before creating the program, as only individuals
with children need be created. The saving can be > 50% and even
in highly converged populations, it saves e−2 = 13.5%.

In GP crossover one child is created from two parents but the root
donating parent (mum) contributes far more than the other (dad).
The subtree from the father is usually small and can be extracted
from each dad and saved before crossover. This gives single parent
crossover, which when combined with fitness first, further reduces
the number of crossovers. Even in the worst case the reduction is
exp(-1) = 37 percent.

With large trees, even in populations of similar fitness, eliminat-
ing bachelors and spinsters is feasible and can reduce both runtime
and memory consumption. Storage in a (N) multi-threaded imple-
mentation for a population M is about 0.63M + N, compared to
the usual M+2N, in practice saving ≥ 17%. We achieve 692 billion
GP operations per second, 692 giga GPops, on an Intel i7-9800X
16 thread 3.8GHz desktop (CPU bandwidth 85 GByte/second).
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1 FITNESS BEFORE CROSSOVER
The latest developments [2] mean in extended unconstrained GP
runs (we run to 70 000 generations) the primary cost is creating
and storing the next generation. The cost of subtree crossover can
be reduced by 1) doing crossover after fitness and 2) separating the
subtree donating parent (the dad). See Figures 1, 2 and 3.
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Figure 1: fitness is evaluated using only parents, i.e., before
the child is created by crossover. Assuming no side effects,
the subtree to be inserted (black) is evaluated on all test cases
and values are transferred to evaluation of mum at the lo-
cation of the subtree to be removed (white). We use incre-
mental evaluation [2], so differences between original code
(white subtree) and new are propagated up 1st parent (mum)
until either all differences are zero orwe reach the root node.
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Figure 2: GPquick subtree crossover requires threememcpy
buffer copies: 1) root segment of donating parent (mum,
red/brown) is copied to offspring buffer. 2) subtree from sec-
ond parent (dad, blue/black) is copied to offspring. 3) tail
(brown) of 1st parent copied to child.
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Figure 3: inplace subtree crossover. Offspring is last child of
1st parent and reuses its buffer. As with Fig. 2, only subtree
to be inserted (black) of 2nd parent (dad) is kept. It is stored
on the heap. 1) In 71% of children the subtree to be remove
(white) and to be inserted (black) are different sizes, and so
memmove is used to shuffle the second part ofmum’s buffer
(brown) up or down. 2) Dad subtree overwrites the buffer.

Figure 4 shows an example of incremental fitness evaluation
using only the child’s parents. Since it does not use the child’s
code, it can determine exactly the child’s fitness before the child
is created. If it turns out the child is never used, e.g. because it is
unlucky, it need never be created.

We assume the GP population is made of pure functions (i.e. there
are no side effects) and the same test cases are used to assign fitness
of the children as were used to find the fitness of their parents. Our
EuroGP 2021 paper [2, Tab. 1] gives details of the GP. The C++ code
ensures that it produces identical results with less overhead.
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Figure 4: “Fitness first” begins by evaluating the subtree to
be removed from the mum (white) and the subtree to be in-
serted (black). It proceeds up themum’s tree until either the
evaluation in the mum and unborn child are the same or it
reaches the root node. The red subtree is in the mum but it
is identical to the code in its child and so need be evaluated
only once per test case. Note the code from the parents is
evaluated without creating the child.
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Figure 5: Evolution of number in population without
children in next generation. 100% two parent crossover,
7-tournament, pop=500.

2 AVOIDING RUNTS WASTING EFFORT
Early in GP runs at each generation there are many poor individuals
which need not be created (see Figure 5).

In the limit of large converged populations (containingM indi-
viduals) on average there will be e−2M individuals which are never
selected to have children (see right hand side of Figure 5). If we
consider just the first parent in crossover, then this rises to e−1M .

As Figure 5 shows, delaying crossover until after fitness selection
can save creating more than half the population during the early
part of a run. Even later, when convergence ensures almost the
whole population has the same fitness, 14% (e−2) of the population
need not be created.

3 LAST CHILD & FATHERLESS CROSSOVER
Initially the populations are very variable and, with strong selection,
breeding is concentrated in a few fit parents. As the populations
starts to converge, there are more parents (with fewer children
each). In each generation, as each child is created, eventually for
each parent, there is only one child left to be created. On reaching
the last child for a root donating parent, instead of copying the code
into the child, the buffer holding the parent’s genome is unhooked
from the parent and passed to the child (see Figure 2). This saves
copying the first part of the child.

In bloated populations, the second parent (dad) donates only a
tiny fraction of the opcodes in the child. Therefore we extract and
save on the C++ heap all the subtrees which will be inserted later.
This is relatively cheap and is done before the bulk of the crossover
operations are done using the root donating parents (mums). This
allows the mum’s last child crossover short cut to be used about
twice as often.

Notice whilst fitness convergence reduces the number of child-
less members of the population, here it helps: as spreading the
breeding effort, means there are more parents in general, and thus
more cases where a mum has only one child left to be created. That
is, convergence increases the number of times the inplace crossover
optimisation can be applied. As the population converges and there
are more parents with children, the number of inplace crossovers
rises, so that on average 268.1 (≲ M(1 − e−2)(1 − e−1)) crossovers
are done inplace per generation.

In about one third (28.9%) of cases, the removed and inserted
subtrees are the same size. If so, the mum’s buffer can be simply
over written with the inserted code (from the dad). However most
(71.1%) of the time they are not the same size and on average half
the buffer must be shuffled either up or down to take account of
the difference in the subtree sizes (see Figure 3). By excluding dads
from crossover, we can use the inplace short cut >50% of the time.

After crossover has been optimised to: 1) ignore individuals
which will not have children (saving about 13.5%) and 2) where
possible, modifying chromosomes inplace, we reduce the opcodes
copied by crossover by 48.1%. This leads to a reduction in the time
taken by crossover by about a quarter (24.4%).

The fitness results are of course identical.
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