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ABSTRACT

Neuro-Encoded Expression Programming (NEEP) implements the
continuous coding for the discrete solution through recurrent neu-
ral networks (RNNs), and smooths sharpness of the discrete coding.
However, the insertion model generating linear coding in NEEP
breaks the coherence of linear coding of RNNs, because the result-
ing symbols tend to be cluttered when RNNs learn the incoherent
sequence relationships. Meanwhile, the redundancy phenomenon
that different RNNs generate the same code results in that lots of
solutions with the same performance exist in the search space, and
causes the decrease for search efficiency. To address these prob-
lems, the linear-dependent multi-interpretation NEEP(LM-NEEP)
is proposed in this research. LM-NEEP tackles the incoherence
problem by employing a linear dependence strategy, and the multi-
interpretation strategy is adopted to deal with the redundancy
problem in search space. The capability of LM-NEEP is estimated
on several symbolic regression problems. The experimental results
display that the LM-NEEP significantly outperforms NEEP and
some classical genetic programming methods.
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1 INTRODUCTION

Neuro-Encoded Expression Programming (NEEP)[2] proposes a
continuous neural encoding approach to improve smoothness and
stability of the search space[5], which improves the conventional
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linear representation in genetic programming for symbolic regres-
sion problems[1]. In NEEP, the k-expression string as solution is
optimized by optimizing the encoder. Thus, the genotype of NEEP
represents the encoder and the phenotype represents the string.
However, the NEEP still exists two weaknesses. First, NEEP intro-
duces a insert method of symbol nodes, which leads to the incon-
sistency between the fixed length k-expressions strings generated
by encoder in NEEP and the strings evaluated by fitness evaluation
function. For example, the encoder should have generated a string
S1 "+ —, x,y, 2", but when "-" is inserted before the "+", the string
will become Sy :"—, +, x,y, z" and Sz will be evaluated instead of Sj.
Second, several different genotypes representing encoder map a
phenotype representing string. In the searching process, the phe-
notype is constant even though the genotype changes. This causes
dramatic decrease in search efficiency.

To address these challenges, the novel linear-dependent multi-
interpretation NEEP(LM-NEEP) is proposed. LM-NEEP generates
the k-expression strings through a linear dependency strategy in-
stead of the original insert method of symbol nodes in NEEP. Then,
In order to solve that different genotypes generate the same phe-
notypes, multi-interpretation strategy is proposed. For the linear
dependency, when a linear string is formed, encoder generates one
node after another node. Thus, the encoder is considered to learn
a dependency relationship between nodes in the linear string. In
the linear dependency strategy, the position vector of node in a
linear string is added as input of encoder, and the generated node
in string are produced in the order. Linear dependency strategy en-
sures that the evaluated string is a generated string by encoder. The
multi-interpretation strategy employs a genotype to map several
phenotype by decoder, thus LM-NEEP increases the probability for
searching the optimal phenotype.

2 METHODOLOGY

2.1 General Framework

LM-NEEP is composed of the encoder and the decoder. After the
initialization of LM-NEEP, the encoder with linear dependency
strategy generates a k-expression string that is considered as the
chromosome of gene expression programming (GEP)[4]. Then, the
decoder with multi-interpretation strategy decodes the string to
several expression trees(ETs) and the fitness values of ETs are eval-
uated. Finally, the optimal value among these fitness values stands
for the fitness to evaluate the encoder, and is adopted to update
parameters of the encoder by optimization algorithms (e.g. Genetic
Algorithm).
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2.2 Encoder

The encoder is approximated by an recurrent neural network (RNN).
The inputs are positions of generated node in the string coded by
the one-hot method. The output are a series of probability values
of all alternative symbols that conform to the k-expression syntax
at the current node position. It is worth noting that if the current
symbolic node position is in the tail of k-expression string, only the
probability of the termination symbol is calculated for finishing a
linear symbolic string with correct syntax. Linear dependency is
reflected in the fact that RNN learns actually how to generate the
next node dependent on one generated node in a linear k-expression
string.

2.3 Decoder

The decoder translates ETs according with a string, and computes
the values of expressions when the data is inputted. In the de-
coder, the multi-interpretation strategy is used to build ETs from
a string. As an example, supposing that the encoder generates a
mentioned string S1, the string is divided into several substrings,
suchas "+, — x,y,2", "=, x,y, 2", "x,y, z". These substrings is adopted
to build ETs, such as "x + y — z"'x — y",'x", and computes values of
ETs. Then, the optimal value are selected as the evaluation value
the string generated by encoder.

3 EXPERIMENT

In the experiment, the performance of LM-NEEP is compared with
NEEP, GP and GEP on 14 benchmarks and two real-world prob-
lems from the paper of NEEP[2]. For a fair comparison, common
parameters of these methods are initialized with the same value.
The experiment is configured as the suggestion from the study[2].
Among these algorithms, the number of generations is 500, the size
of population is 100, the maximum code length is 61. In GP[3], the
depth of max tree is 10, the length of maximum tree is 61, the depth
of maximum mutation is 4, the depth of maximum crossover is 10,
the grow depth is 1, the mutation rate is 0.3, the crossover rate is
0.7, the tournament size is 3. For GEP[3], the header length is 30,
IS rate is 0.1, RIS rate is 0.1, the inversion rate is 0.1, the mutation
rate is 0.06, the crossover rate is 0.7 and the tournament size is
2. In NEEP and LM-NEEP, the header length is 30, the number of
hidden neurons is 40, other parameters of GA, PSO, CMA-ES were
specified by default. Note in particular that the set of functions for
Sphere5 and Poly10 is [+, —, *, /], and the other benchmarks are [+,
—, *, /, sin(x), cos(x), ", In|x|]. Moreover, the division is protected
by f = x/(y + €), € is a small number (e.g., Ie-100).

50 independent test experiments are conducted for LM-NEEP,
GP, GEP, and NEEP, and the mean-square error (MSE) is used as the
metric for evaluating the performance. The average performance
of each generation is shown in the Figure. 1. As results, we can
find that LM-NEEP standouts other algorithms on 10 of the 16
benchmarks, and it is competitive on the remaining problems. For
the convergence capacity, it can be found that LM-NEEP converges
faster than others.

4 CONCLUSIONS

This paper presents a novel Linear-dependent Multi-interpretation
Neuro-Encoded Expression Programming method for enhancing
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Figure 1: Evolution of the average testing errors of 50 inde-
pendent trials for compared algorithms. The horizontal axis
represents generations, and the vertical axis represents MSE

the capability of NEEP. The linear dependence strategy and the
multiple interpretation strategy of LM-NEEP are effectively to avoid
solutions to fall into local optimums, and endows the ability for LM-
NEEP to find optimal solutions quickly. The experimental analysis
shows that LM-NEEP has the potential to improve test accuracy
and efficiency. There are more interesting research directions in the
future. LM-NEEP can insert constants to strings. Also, LM-NEEP is
able to offer the solutions for more applications.
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