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ABSTRACT
For many supervised learning tasks, ensemble classifiers – which
make predictions by combining multiple simple models – outper-
form single model classifiers. While genetic programming can be
used to evolve populations of simple classifiers, it tends to pro-
duce populations of highly similar models. In this work we propose
Neuro MAP-Elites (NME) as a method for evolving populations of
high performingmodels which produce diverse predictions, making
them suitable for constructing ensembles.
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1 INTRODUCTION
The importance of diversity in ensemble classifiers is well docu-
mented, and while there may be various notions of diversity, for
ensemble classifiers it is specifically error diversity which matters
most [3].
Genetic programming (GP), an evolutionary algorithm which

produces populations of solutions, can be used to create ensem-
bles. However, standard GP algorithms tend to produce populations
containing many similar solutions, making them ineffective as en-
sembles. Recent work in the evolutionary computing community
on quality diversity [4] has produced methods for increasing popu-
lation diversity, including the Multi-dimensional Archive of Pheno-
typic Elites (MAP-Elites) algorithm [7], which has been particularly
successful at a wide range of tasks.
MAP-Elites represents a population as a structured grid, as op-

posed to the unstructured set representation used by traditional GP
algorithms. In MAP-Elites, candidate solutions only compete with
other candidates assigned to the same cell, which allows the pop-
ulation to maintain diversity as evolution proceeds. The mapping
from solutions to cells is facilitated by behavior descriptors, which
map solutions to a low dimensional behavior space. The behavior
space is then partitioned into cells, and solutions are assigned to
the cells in which their behavior descriptors lie.
Defining effective behavior descriptors is an important aspect

of MAP-Elites, as they determine the sorts of diversity which will
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be produced. Simple behavior descriptors for GP may be based on
the complexity of programs (such as the number of operations and
features used), or the frequency of different types of operations.
However, these are not based on the principle that error diversity is
the type of diversity needed in ensembles. The main contribution of
this work is a methodology for creating low dimensional descriptors
which characterize the behavior of classifiers based on their errors.

2 NEURO-MAP-ELITES
One natural way to represent errors which a classifier makes on a
given dataset of 𝑁 samples is with a length 𝑁 binary indicator vec-
tor 𝑏, where ∀𝑖 ≤ 𝑁,𝑏 [𝑖] == 𝑇𝑟𝑢𝑒 if and only if the classifier makes
an error on the 𝑖𝑡ℎ sample. The issue with this natural descriptor,
is that the dimensionality of the descriptor (indicator vector) will
increase linearly with the size of the dataset, whereas MAP-Elites
requires low dimensional descriptors, typically 2-3 dimensions.
Our proposed Neuro-MAP-Elites (NME) algorithm operates by

finding a 2D encoding of the 𝑁 dimensional binary error indicator
vector which is most informative about the full error vector. The
way we measure how informative a 2D encoding is about the origi-
nal indicator vector is by training a neural network to reconstruct
the original vector from the encoding and measuring the quality of
the reconstruction. Specifically, NME makes use of the variational
autoencoder (VAE) framework [6] to learn optimal encodings for
the high-dimensional error vectors.
In our implementation of NME, we used linear genetic pro-

grams [1] as the predictive models, however since the behaviour
descriptor used in NME is based solely on the predictions it can
be used with other GP variants as well. NME consists of 3 phases:
mining solutions, VAE training, and MAP-Elites with encoder.

Mining Solutions. The goal of the first phase of NME is obtain
a sample from the distribution of errors produced by ‘good’ pro-
grams, which is used in phase two to train the VAE. In this work,
we consider any solution which is present in a final population and
obtains a balanced accuracy score greater than 0.5 on the training
data. To create this sample, we run a basic version of MAP-Elites
using simple descriptors which count the number of effective in-
structions and features used, and record the predictions made by
each individual in the final populations on all training samples.

VAE Training. In the second phase we train a VAE to learn a low-
dimensional representation of the errors produced in the first phase.
When training the VAE, we use the 𝛽-VAE training objective [5],
which contains two terms – one measures the reconstruction qual-
ity and the other is a regularization term which encourages the
distribution of encodings to be approximately normally distributed
– and a constant (𝛽) which controls the weighting of the two terms.
The value of 𝛽 for each dataset was determined using cross valida-
tion while training the VAE, from values in the set {0.2, 0.3, 0.4}.
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Classic Machine Learning Basic ME NME
Dataset Random KNeighbors Logistic GaussianNB SVC Best Vote Best Vote

Forest Regression Single (PMV) Single (PMV)

Breast .950 .564 .500 .949 .500 .939 .579 .913 .943
Monk2 .987 .709 .447 .456 .697 .729 .502 .642 .785

HV_wtihout_noise .646 .637 1.00 .523 .949 1.00 .426 .986 1.00
HV_with_noise .575 .520 .974 .526 .854 .687 .495 .709 .802

GAMETES_Epistasis .499 .515 .486 .513 .486 .495 .516 .510 .569
Parity5+5 .594 .601 .463 .463 .473 1.00 .494 .891 .986
Mean .709 .591 .645 .572 .660 .808 .502 .775 .848

Table 1: Comparison of balanced accuracy scores of common machine learning classifiers and evolved classifiers. Best scores
for each dataset are indicated in bold.

MAP Elites with encoder. In the final phase we run MAP-Elites
again, however instead of using the basic descriptors (as in phase
1), we now use the encoder network of the VAE (trained in phase
2) to produce the descriptors. The encoder takes as input a binary
prediction vector made by a program on the training data, and
outputs a 2-dimensional real valued encoding of the prediction
vector. As the encoder was trained as part of a VAE, the distribution
of encodings should be approximately a unit normal distribution.
We take advantage of this fact when partitioning the latent space
into bins to use with MAP-Elites and set the bin boundaries so that
each bin has equal probability mass under a normal distribution.

3 EXPERIMENTS AND RESULTS
To demonstrate the efficacy of our method, we compare the per-
formance achieved by classifiers generated with NME against the
performance of standard machine learning classifiers, as well as
genetic programming classifiers evolved using a classic version of
MAP-Elites. All experiments using standard classifiers used the clas-
sifier implementations from scikit-learn [9], as well as scikit-learn
utilities for tuning their parameters1.
For both the basic MAP-Elites and NME we tested 3 ways of

creating a final classifier from the final population. The best single
classifier selects a single best program from the final population,
and this program is used for as the final classifier. The full majority
vote (FMV) classifier uses the entire population, and outputs the
prediction of the majority of the programs. The partial majority
vote (PMV) employs a scheme similar to the FMV, but only includes
programs with fitness about a threshold 𝑡 , where 𝑡 is chosen to
maximize the accuracy of the majority vote classifier on the training
data. In our experiments the PMV classifier always outperformed
the FMV version, so results from FMV have been omitted.

Dataset Selection. As our algorithm produces and ensemble clas-
sifier, we are particularly interested in how it preforms relative
to other ensemble classifiers. To this end we selected the datasets
based on the performance of a common ensemble classifier, random
forest [2]. We use a subset of datasets from the PennMachine Learn-
ing Benchmarks (PMLB) repository [8]. Specifically, we selected
two datasets where random forest performs much better than other
standard classifiers, two datasets where random forest performs
much worse and finally two datasets where all the tested standard
algorithms do poorly.
1see github.com/bigtuna08/nme/ for the code to tune parameters of all models

Comparison Results. Measured across all datasets, our method
compares favorably against both the traditional machine learning
classifiers and LGP classifiers evolved using MAP-Elites with basic
LGP descriptors, however no method is a clear winner across all of
the datasets (see Table 1). On the two datasets which were selected
for being easy for random forest (Breast and Monk2), random forest
was the most accurate. On one of the datasets which was signif-
icantly harder for random forest than other standard classifiers
(HV_without_noise) multiple methods achieved perfect accuracy,
including NME partial vote; on the other (HV_with_noise), multiple
standard methods outperform all evolved classifiers. Finally, on the
datasets which were difficult for standard methods (Parity5+5 and
GAMETES_Epistasis), evolved classifiers outperformed the stan-
dard ones, although in only one of these (GAMETES_Epistasis) was
the NME classifier the best.
Another finding evident from Table 1 is that of the methods

test that evolve ensembles, those created with NME significantly
outperform ensembles created with the basic variants of MAP-
Elites, despite the fact that basic MAP-Elites can produce high
quality single solutions, sometimes better than the singles solutions
produced by NME. This result provides support for our hypothesis
that NME generates populations with more meaningful diversity,
and that this diversity is beneficial for creating ensembles.
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