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ABSTRACT
Estimation of distribution genetic programming (EDA-GP) replaces
the standard variation operations of genetic programming (GP) by
learning and sampling from a probabilistic model. Unfortunately,
many EDA-GP approaches suffer from a rapidly decreasing popula-
tion diversity which often leads to premature convergence. How-
ever, novelty search, an approach that searches for novel solutions
to cover sparse areas of the search space, can be used for generating
diverse initial populations. In this work, we propose novelty initial-
ization and test this new method on a generalization of the royal
tree problem and compare its performance to ramped half-and-half
(RHH) using a recent EDA-GP approach. We find that novelty ini-
tialization provides a higher diversity than RHH and the EDA-GP
also achieves a better average fitness using novelty initialization.
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1 INTRODUCTION
Estimation of distribution genetic programming (EDA-GP) replaces
the standard mutation and recombination operators of genetic pro-
gramming (GP) by sampling from a learned probabilistic model.
In each generation, EDA-GP first captures relevant properties of
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the parent population in a probabilistic model and then uses the
probabilistic model to transfer these properties to the offspring. The
idea is to reduce the number of fitness evaluations and to increase
the overall quality of the search.

Unfortunately, many EDA-GP approaches suffer from a rapidly
decreasing population diversity which often leads to pre-mature
convergence. This is true since sampling from a probabilistic model
usually results in a strong exploitation of the search space. Espe-
cially in low locality problem domains (e.g, needle-in-a-haystack
problems [5]), EDA-GP easily gets stuck in local optima. There-
fore, diversity preserving mechanisms are needed that assure high
diversity during an EDA-GP run.

A diverse initial population is the first step towards a high di-
versity search where ramped half-and-half (RHH) is a popular ini-
tialization method for GP. Here, we can use large population sizes
to guarantee low sampling error and hopefully high diversity in
the initial population [4]. However, RHH is also known for intro-
ducing a strong bias and often lacks in generating populations
with high diversity [1]. Novelty search [2, 3] is an approach that
searches for novel solutions that cover sparse areas of the search
space. Therefore, novelty search seems suitable for finding diverse
initial populations.

In this work, we propose novelty initialization. We test the new
initialization technique on a generalization of the royal tree problem
and compare its performance to RHH using denoising autoencoder
genetic programming (DAE-GP) [6] as probabilistic model.

2 EXPERIMENTS AND RESULTS
In the following, we briefly introduce the experimental setting and
present our results.

2.1 Experimental Setting
To evaluate novelty initialization and compare its performance to
RHH, we use a generalization of the royal tree problem where we
previously define a target individual 𝑥opt and calculate the fitness
of each candidate solution (fitness𝑥 ) as the normalized Levenshtein
distance to 𝑥opt. Thus, fitness𝑥 ∈ [0, 1], where fitness𝑥 = 0 means
that 𝑥 is identical to 𝑥opt (minimization problem) [6].

We search for 8 different target individuals initialized with RHH,
minimum depth 𝑑min = 2, maximum depth 𝑑max = 3, and conduct
10 runs per target individual. As a function and terminal set, we
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use F = {+,−, exp, log} and T = {x}. We set the population size to
750, the tournament selection size to 2, and use the same hyper-
parameters as well as the same frameworks for the DAE-GP as
in [6].
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Figure 1: Average fitness over generations for novelty initial-
ization and ramped half-and-half.
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Figure 2: Population diversity over generations for novelty
initialization and ramped half-and-half.

To generate a population with novelty initialization, we perform
a GP run using novelty search. We define the novelty of a candidate
solution by its average normalized Levenshtein distance to the k-
nearest neighbors and set k to 10% of the population size, thus k =

75. At the end of the novelty search run, we select the individuals for
our initial population from the archive used by novelty search. To
increase diversity even for RHH, we remove eventually generated
duplicate individuals.

2.2 Results
To analyze the influence of novelty initialization, we compare the
development of the average fitness and the development of the
average population diversity for aggregated DAE-GP runs. We
define the population diversity as the average novelty over all
candidate solutions in a population. Results are averaged over 80
runs.

Figure 1 shows the average fitness over generations for novelty
initialization and RHH. For both initialization methods we observe
a similar average fitness in the initial population. However, while
the DAE-GP initialized with RHH gets stuck in generation four,
fitness can be further improved with novelty initialization. The
DAE-GP achieves a best average fitness of around 0.39 with RHH
and a near zero best average fitness using novelty initialization.
The results strongly indicate that novelty initialization provides an
initial population that better covers the search space.

Figure 2 shows the average population diversity over generations
for novelty initialization and RHH. In the initial population, nov-
elty initialization achieves a higher population diversity compared
to RHH. As expected, the population diversity decreases during a
DAE-GP run. However, the decrease is stronger when using nov-
elty initialization. From generation 5 onwards, population diversity
even falls below the population diversity of the DAE-GP initial-
ized with RHH, which can be explained by the strong decrease
in the fitness (lower values are better) of the DAE-GP initialized
with novelty initialization (Figure 1). Here, the DAE-GP converges
strongly towards near optimal solutions resulting in a less diverse
population.

3 CONCLUSIONS AND FUTUREWORK
We introduced novelty initialization as a new initialization method
for GP. We showed that novelty initialization generates a more
diverse initial population and better covers the search space com-
pared to RHH. For a generalization of the royal tree problem, we
demonstrated that a DAE-GP with novelty initialization outper-
forms DAE-GP initialized with RHH.

In future work, we will study the method’s performance on ad-
ditional benchmark problems, other EDA-GPs and further analyze
the provided diversity.
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