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ABSTRACT
Efforts to evolve modularity in genetic programming are as old
as the field itself. While many techniques have been proposed to
evolve programs that make use of simultaneously-evolved mod-
ules, the general problem of evolving large-scale, modular software
still stands as a central challenge to the field. In this paper, we
present GLEAM, a mechanism of achieving modularity, whereby
an evolving program uses a local library of modules. The program
can refer to the modules during execution and the ones not used
by the program are eventually replaced by code segments extracted
from the program itself. Modules can also be absorbed by the pro-
gram when their references in the program get expanded to the full
code segments. We show that this simple mechanism improves the
success rate on a number of program synthesis problems.
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1 INTRODUCTION
Genetic programming has been successful in synthesizing complex
programs, like the ones from the introductory programming text-
books [3]. In order to solve more complex problems, the need for
evolving modular programs has long been felt in the genetic pro-
gramming community. In this paper, we present GLEAM, a simple
mechanismwhereby evolving programs can create and use modules
during evolution. Specifically, each individual has a local library of
modules that can be referenced by the program. Handling of the
module arguments and return values depends on the underlying
system for which GLEAM is being used. The library is updated
after every generation (see Section 3.2). Through the experiments
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presented in this paper, we demonstrate the ability of GLEAM to
improve the success rate on multiple benchmark problems.

2 EVOLVING MODULES IN GP
Various attempts have been made to encourage modularity in evolv-
ing programs. One of the first attempts include that of John Koza
in evolving ADFs [6]. Module Acquisition [1], and others improve
upon the concept of ADFs. In Grammatical Evolution (GE), modules
are identified by looking at the subtrees in the individuals in the
population [9] and the underlying grammar is modified to accom-
modate these modules. A Run Transferable Library [4] is a set of
modules that is transferred from one run to the next for a given
problem. In tag-based modules [8], a program can label a chunk of
code with an integer tag and later refer to it. SignalGP [7] considers
programs as collections of functions accessible through identifiers.
In Tangled program graphs (TPG) [5], there are two populations,
one for teams (which act as individuals) and the other for programs
(which act as modules).

3 GLEAM
The description of GLEAM in this section is for the linear represen-
tation of genomes. For other representations, suitable modifications
can be made.

To refer to a particular module with identifier 𝑖 , the program
uses the instruction tagged_i. To generate tag references, we use a
function tagged_erc_limit, which, when called, inserts tagged_j
in the program, where 𝑗 is an integer chosen randomly between 0
and a pre-defined limit. For this paper, this limit is set to 10.

3.1 Initializing the library
In the version of GLEAM that we present here, each individual
library contains 10 modules. This is done keeping in mind the mem-
ory and computational costs. The modules are initialized using the
same instruction set as is available to the program. Consequently,
modules, like the program, can also call each other. The underlying
system, therefore, should handle any possible recursions due to
this. The size of the initial modules was kept one-tenth the size of
the initial programs.

3.2 Updating the library
For every generation, in addition to applying various genetic oper-
ators on the child genome, its local library is also updated.

3.2.1 Mutation. Every module genome in the library is mutated
using the same mutation method used for the child genome. The
rate, however, can be different from that of the child genome. This
difference in rates will determine whether or not the modules are
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Table 1: Genetic Programming Parameters.

Parameter Value
Population size 1000
Number of generations 300
Parent selection algorithm lexicase
Mutation operator UMAD
Mutation rate 0.09
Genome Representation Plushy
Number of runs per condition 50

being protected, i.e., the program is keeping important segments
from changing too frequently.

3.2.2 Extraction. A module is considered as being used if it
is called by the program directly or indirectly (it is called by a
module which is being called by the program). In the extraction
operator, every unused module gets replaced by a new module with
a certain probability. Various ways to search for the new modules
are: randomly generated code segment, randomly chosen segment
of the host genome or any other genome in the population, another
module from the same individual or from another individual in the
population, etc. To sample the lengths of the new modules, we use
the Negative Binomial distribution with parameters 2 and 0.4.

3.2.3 Absorption. In this operation, every module reference,
with a certain probability, be it in the program or the modules
themselves, gets replaced by the code segment it refers to.

4 EXPERIMENTS
Experiments were conducted in a GP system called PushGP (the
version called Clojush1). To test the effectiveness of GLEAM, we ran
it on six problems: Last Index of Zero, Count Odds, Sum of Squares,
Small or Large, Compare String Lengths, Greatest Common Divisor.
The descriptions of first five problems are given in the General
Programming Benchmark Suite [3]. The last one is a commonly
used problem: Given two integers, the solution should return their
greatest common divisor. Various GP parameters are given in Table
1. GLEAM specific parameters and their values are given below.
There is no mutation at the level of modules. Every unused module
is replacedwith a probability of 0.75 by a randomly chosen sequence
of genes that is extracted from the host genome. The lengths of
new modules are drawn from a Negative Binomial distribution. We
allow module references to get expanded in the program as well as
in modules with a probability of 0.1.

4.1 Results
Table 2 gives the number of successes for various problems. To
qualify as a solution, the program must have a zero error on the
training set, which was used during evolution, and another held-
out test set, which was not used during evolution. The programs
which produced zero error on the training set were first simplified
(procedure detailed in [2]), before running them on the test set.

1https://github.com/lspector/Clojush

Table 2: Number of success out of 50 for various configura-
tions.

Problem W/out GLEAM With GLEAM
Last Index of Zero 29 37
Count Odds 3 5
Sum of Squares 9 6
Greatest Common Divisor 17 20
Small or Large 4 6
Compare String Lengths 14 12

Clearly, GLEAM appears to improve the success rate for some of
the problems from the benchmark suite.

5 CONCLUSIONS
We introduced a general framework for evolving modules in GP
called GLEAM. In this paper, we implement it in PushGP and show
that it improves the success rate on multiple problems from the
program synthesis benchmark suite.

For problems more complex than the ones studied here, the
utility of GLEAM remains to be seen. Additionally, why GLEAM
improves the success rate for some problems while not for others
can be taken up in a future study.
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