
Neurally Guided Transfer Learning for Genetic Programming
Alexander Wild

a.wild3@lancaster.ac.uk
School of Computing and Communications,

Lancaster University
Lancaster, UK

Barry Porter
b.f.porter@lancaster.ac.uk

School of Computing and Communications,
Lancaster University

Lancaster, UK

ABSTRACT
A key challenge in GP is how to learn from the past, so that the
successful synthesis of simple programs can feed in to more chal-
lenging unsolved programs. In this work we present a transfer
learning (TL) mechanism for GP which extracts fragments from
programs it synthesises, then employs deep neural networks to
identify new problems to deploy them into, to boost performance.
This end-to-end system requires no human identification of which
programs to use as donors for TL, the system only needs IO exam-
ples.

CCS CONCEPTS
• Computing methodologies → Neural networks; Genetic
programming.

KEYWORDS
Genetic Programming, Transfer Learning, Neural Networks

ACM Reference Format:
Alexander Wild and Barry Porter. 2021. Neurally Guided Transfer Learning
for Genetic Programming. In 2021 Genetic and Evolutionary Computation
Conference Companion (GECCO ’21 Companion), July 10–14, 2021, Lille,
France. ACM, New York, NY, USA, 2 pages. https://doi.org/10.1145/3449726.
3459511

1 INTRODUCTION
This works aims to improve performance of Genetic Programming
by leveraging the power of modern Deep Learning techniques to
recognise high-level code properties, using it to power an end-
to-end fully automated Transfer-Learning (TL) system. The work
demonstrates an approach to a step missing in the literature of TL
for GP, automated identification of donor program. Our system
takes only IO examples of desired behaviour, and exploits its previ-
ous successes to solve future problems. We demonstrate a gain in
both probability of solving a problem and number of problems for
which at least one run produced a solution.

Existing work in Transfer Learning for GP. Transfer Learn-
ing (TL) has been studied to some extent in the field of Genetic
Programming, including the effects of transferring sub-trees be-
tween symbolic regression problems and how to select trees for

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
GECCO ’21 Companion, July 10–14, 2021, Lille, France
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8351-6/21/07.
https://doi.org/10.1145/3449726.3459511

best results [1–3]. Our work’s primary contribution is the use of
machine learning, specifically deep neural networks to identify
donor programs from already-solved problems. We present a fully
automated approach to selecting which prior solved problem, and
associated code fragments, to use as a basis for new unsolved prob-
lems – rather than relying on human-aided selection. As such, we
require no designer knowledge of the problem space in selecting
useful genetic material for transfer in to new problems.

2 METHODOLOGY

Algorithm 1 An overview of the process we envisage as a fully
automated end-to-end approach to Transfer Learning between prob-
lems within a corpus

1: while unsolved_problems_exist do
2: for all stored_fragments do
3: present problem’s IO to fragment’s associated NN
4: if NN estimate of probability > 0.5 then
5: 𝑆 = 𝑎𝑟𝑏𝑖𝑡𝑎𝑟𝑦_𝑟𝑎𝑛𝑘𝑖𝑛𝑔_ℎ𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐
6: end if
7: end for
8: run GP on problem with fragment with highest 𝑆
9: if GP returns valid solution then
10: extract all code fragments from solution
11: for all extracted_fragments do
12: generate 10,000 program training set 𝑃 wherein all pro-

grams contain given fragment
13: generate 10,000 program training set 𝑁 wherein all

programs do not contain given fragment
14: train an NN to discriminate between 𝑃 and 𝑁

15: evaluated trained NN on existing found solutions
16: if NN accuracy on found solutions > 0.5 then
17: store NN + fragment for future deployment
18: end if
19: end for
20: end if
21: end while

Our approach employs a language designed for linear genetic
programming, employing the open-source Turing-Complete lan-
guage used in [4]. It initially aims to solve problems using standard
GP techniques, from a user-supplied list of IO example set problem
specifications. If it solves any, it breaks down the newly synthesised
program into ‘fragments’ of code. These are any sequence of four or
fewer lines of code which do not depend on any previous lines, and
may contain flow control operators such as loops or conditionals.
We define a line as depending on a previous one if the line reads

267



GECCO ’21 Companion, July 10–14, 2021, Lille, France Alexander Wild and Barry Porter

from a variable written by a previous one, and we consider a line
previous to another if its operation could have been executed before
that line, either due to occurring earlier in a program or due to a
loop both lines are contained in.

For every fragment extracted, two corpora of 10,000 programs
are generated: one in which every program has the given fragment,
one in which none do. These programs are generated by first taking
all GP-synthesised programs which fit the given corpus’ require-
ments (either having or lacking the fragment), and adding them to
the corpus. At this point, both corpora will feature only the seed
programs, and have a size of at least one but far beneath the desired
10,000. They are then expanded by iterative child generation and ad-
dition. While the corpus is below target size, two parent programs
from it are chosen uniformly at random, a crossover mutation ap-
plied, then they are mutated using the same process employed by
our GP. Programs are then only accepted if they are demonstrated
to have different behaviours on a fixed testing input set.

Once these two corpora of programs have been produced, a
neural network (NN) is trained to recognise Input-Output (IO) map-
pings generated by feeding randomly generated inputs into pro-
grams from both corpora. This aims to produce a network able to
recognise which programs have the given fragment and which do
not, based purely on an IO example set. Each fragment therefore
has its own associated NN, which is trained to recognise it.

When the system moves onto the next unsolved user-provided
IO example set, it can run every trained NN and receive a probability
estimate for presence of the NN’s associated fragment. A heuristic
is employed to decide which fragment to select, from the set of all
those with a NN returning an estimated presence probability > 0.5.
We employ a rarity heuristic, which selects fragments which have
a lower sum probability estimate across all user provided IO, that is
to say the ones which would we deployed on fewer problems. This
selects for ‘specialist’ fragments, rather than broadly applicable
ones such as simply ‘possesses a loop’.

The NN architecture employed is a simple feed-forward net-
work, which takes a fixed-length encoding of the IO examples (with
padding to support the randomly chosen array lengths), and passes
it through 4 densely connected layers of 128 neurons, before out-
putting via single sigmoid-range neuron (serving as a probability
estimate for the presence of the code fragment).

With a fragment selected, we run a normal GP process, but stat-
ically force all programs in the populations to include the given
fragment in their source code (initial generation is additive muta-
tions of the fragment itself). We allow the fragment to exist solely as
non-functional intron code, which allows it to be excluded from the
functionality of the GP process if it is not beneficial, or to remain
ready for re-activation by subsequent mutations as the program
develops over the GPs’ generations.

An overview of the approach is given in Algorithm 1, showing
the main loop of the process.

3 RESULTS AND DISCUSSION
Complete list of problems and results from this section are available
in attached appendix.

We evaluate our system on a set of 35 problems, all of which
take the form of a function which receives both an integer and an

Approach Find Rate Problems Solved

Baseline (using NS) 42.6% 27
GP Transfer Learning 54.1% 32

Table 1: Success of the Transfer Learning system on a corpus
of 35 integer and integer-array problems compared to the
GP process without TL. (n=20)

array of integers, and returns an array of integers. These programs
range for easy tasks, such as copying the input array to the output,
to sorting; concatenation; returning the absolute of the input; and
conditionals relating to the integer and to the values in the input
array. We allow the system two passes through the problem corpus,
to allow it to potentially transfer from programs lower down in the
corpus to problems earlier (our baseline comparison is similarly
allowed two runs to maintain equivalent CPU expenditure).

Our results are displayed in table 1. We see that not only does
the probability of finding an arbitrary program increase, some
problems which had a find rate too low to measure with 20 repeats
began to be found. While 8 problems remained unsolved, including
sorting, this indicates that the technique is useful for boosting the
complexity of problems which can be solved, rather than simply
boosting reliability on problems the GP can already handle.

We saw largest gains in the problems which required an output
array of differing length to the input one. This is likely due to our
fitness function being very course with regards to output length,
with a flat penalty for any length difference, rather than a shaped
landscape. As such, the GP itself struggled to assemblemultiple lines
which would correctly generate the desired output array length.
Our preliminary experiments indicate that an NN is able to spot
the need for array length change code with an accuracy of 73%, and
can therefore deploy the code in a fashion which preserves it until
subsequent mutations can successfully build upon it.

Conversely, no problem was majorly degraded. The code frag-
ments are not obligated to form a functional part of the eventual
program, their operators could be rendered inert (i.e. by writing to
variables which are never read).

4 ACKNOWLEDGEMENTS
This work was partly supported by the UK Leverhulme Trust via
the Self-Aware Datacentre project, grant RPG-2017-166.

REFERENCES
[1] Qi Chen, Bing Xue, and Mengjie Zhang. 2020. Genetic Programming for Instance

Transfer Learning in Symbolic Regression. IEEE Transactions on Cybernetics PP
(02 2020), 1–14. https://doi.org/10.1109/TCYB.2020.2969689

[2] Brandon Muller, Harith Al-Sahaf, Bing Xue, and Mengjie Zhang. 2019. Trans-
fer learning: a building block selection mechanism in genetic programming for
symbolic regression. 350–351. https://doi.org/10.1145/3319619.3322072

[3] Damien O’Neill, Harith Al-Sahaf, Bing Xue, and Mengjie Zhang. 2017. Common
subtrees in related problems: A novel transfer learning approach for genetic
programming. 1287–1294. https://doi.org/10.1109/CEC.2017.7969453

[4] Alexander Wild and Barry Porter. 2019. General Program Synthesis using Guided
Corpus Generation and Automatic Refactoring. In Search-Based Software Engi-
neering (Lecture Notes in Computer Science), Shiva Nejati and Gregory Gay (Eds.).
Springer-Verlag, 89–104. https://doi.org/10.1007/978-3-030-27455-9_7

268


