
Evolving Reservoir Weights in the Frequency Domain
Sebastián Basterrech

Faculty of Electrical Engineering and Computer Science,
VŠB-Technical University of Ostrava

Ostrava, Czech Republic
Sebastian.Basterrech@vsb.cz

Gerardo Rubino
Inria Rennes – Bretagne Atlantique

Rennes, France
Gerardo.Rubino@inria.fr

ABSTRACT
Reservoir Computing models are a class of recurrent neural net-
works that have enjoyed recent attention, in particular, their main
family, Echo State Networks (ESNs). These models have a large
number of hidden-hidden weights (in the so-called reservoir) form-
ing a recurrent topology. The reservoir is randomly connected with
fixed weights during learning: only readout parameters (from reser-
voir to output neurons) are trained; the reservoir weights are frozen
after initialized. Since the reservoir structure is fixed during learn-
ing, only its initialization process has an impact on the model’s
performance.

In this work, we introduce an evolutionary method for adjusting
the reservoir non-null weights. Moreover, the evolutionary process
runs on the frequency space corresponding to a Fourier transfor-
mation of the weights. We combine an evolutionary search in the
Fourier space with supervised learning for the readout weights.
The resulting algorithm, called EvoESN (Evolutionary ESN), ob-
tains promising results modeling two well-known problems of the
chaotic time-series area.

CCS CONCEPTS
•Computingmethodologies→Neural networks;Bio-inspired
approaches; Genetic algorithms;

KEYWORDS
Neuroevolution, Recurrent Neural Networks, Echo State Network,
Genetic Algorithms, Reservoir Computing
ACM Reference Format:
Sebastián Basterrech and Gerardo Rubino. 2021. Evolving Reservoir Weights
in the Frequency Domain. In 2021 Genetic and Evolutionary Computation
Conference Companion (GECCO ’21 Companion), July 10–14, 2021, Lille,
France. ACM, New York, NY, USA, 2 pages. https://doi.org/10.1145/3449726.
3459457

1 INTRODUCTION
A Recurrent Neural Network (RNN) is a dynamical system with
the ability of conveying information across time. The recurrences
ensure that historical information from the input data can be stored
in internal hidden states. In spite of the good properties and en-
couraging experimental success, RNNs are complex and difficult to

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
GECCO ’21 Companion, July 10–14, 2021, Lille, France
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8351-6/21/07.
https://doi.org/10.1145/3449726.3459457

properly train, especially when the network is large and there are
long-term data dependencies [5].

During the last 20 years, a type of RNNs named Reservoir Com-
puting (RC) has captured considerable attention, due to its out-
standing results for modeling chaotic systems and solving real-
world problems [5]. A pioneer RC model is the Echo State Network
(ESN) [5]. The model uses a recurrent hidden-to-hidden structure
(the reservoir) to memorize patterns of the input history. The reser-
voir is driven by the input signal, and projects the input into a
high-dimensional space. The reservoir weights are realizations of
i.i.d. random variables. To guarantee specific stability conditions,
the random initialised weights are scaled in order to keep control
over the spectral radius of𝑊 r matrix [1, 3]. The training algorithm
adjusts only the rest of the model parameters, which composes a
fast adapting readout layer. The dynamics of the model is described
in terms of a discrete-time system with an input signal 𝑢 (𝑡) ∈ R𝐾
and a hidden state 𝑥 (𝑡) ∈ R𝑁 . The recurrent state 𝑥 (𝑡) and the
model’s output 𝑦 (𝑡) are computed according to the following ex-
pressions [3]: 𝑥 (𝑡) = 𝑓

(
𝑊 in𝑢 (𝑡) +𝑊 r𝑥 (𝑡 −1) +𝑊fb𝑦 (𝑡) +𝜀 (𝑡)

)
, and

𝑦 (𝑡) = 𝑔(𝑊 out [𝑢 (𝑡);𝑥 (𝑡)]), where 𝑡 is the discrete time index,𝑊 in

is a matrix with input-to-reservoir weights,𝑊 r has the reservoir
internal weights,𝑊 out is the reservoir-to-output weight matrix,
𝑊fb is the matrix with feedback connections and 𝜀 (𝑡) is a noise
vector. The [·; ·] operation denotes vector concatenation. Functions
𝑓 (·) and 𝑔(·) are predefined coordinate-wise functions. Matrix𝑊fb

and vector 𝜀 (𝑡) are optional (they are set to zero in the case of
standard ESN).

Since the large recurrent structure is fixed during the training,
the RC family has also received some critics [6]. In this work, we
present an evolutionary computational model for creating efficient
reservoirs called EVOlutionary Echo State Network (EvoESN). We
combine ideas regarding indirect encoding of the weight connec-
tions [4], EVOLINO [6], and the efficiency of ESNs [5]. In the pro-
posed model, the reservoir has a fixed pattern of connectivity (as
in standard ESNs), and we apply the evolutionary process to find
good weight connections. The evaluation of the proposed computa-
tional model was made over two well-known benchmark problems:
Mackey Glass system and Lorenz system [1, 3, 6].

2 EVOLUTIONARY ECHO STATE NETWORK
Let us denote by𝑀 the number of non-null weights in𝑊 r. Since
reservoirs are designed to be sparse for efficiency reasons, then
𝑀 ≪ 𝑁 2 [5]. We arbitrary design the pattern of connectivity of the
reservoir, i.e. we choose𝑀 positions in𝑊 r with non-zeros values.
Let’s denote by 𝑝 the positions of those non-null coefficients, a
vector having size𝑀 . By 𝑝𝑘 = (𝑖, 𝑗) we mean that the 𝑘th position
in 𝑝 refers to the weight in row 𝑖 and column 𝑗 of𝑊 r. We also
use a vector 𝜈 having dimension𝑀 , containing those weights, that

271

https://doi.org/10.1145/3449726.3459457
https://doi.org/10.1145/3449726.3459457
https://doi.org/10.1145/3449726.3459457


GECCO ’21 Companion, July 10–14, 2021, Lille, France Sebastián Basterrech and Gerardo Rubino

is, 𝜈𝑘 = 𝑊 r
𝑝𝑘

= 𝑊 r
𝑖, 𝑗
. During the procedures described below, 𝑝

(the positions) remains fixed and 𝜈 (the values) evolves. In order to
obtain a good reservoir, we move vector 𝜈 to the frequency domain
using the DCT transform. Then, we change it running a Genetic
Algorithm (GA) and we go back to weights through the inverse
DCT. We evaluate the introduced changes by training the ESN with
the just obtained reservoir. This process is repeated until some
convergence condition is satisfied.

Let us denote 𝛼 = (𝛼1, . . . , 𝛼𝐶 ) the vector with the first 𝐶 DCT
coefficients, 𝐶 ≤ 𝑀 , that is randomly initialized. Denote now by
𝜙 (·) the inverse DCT transformation. In case 𝐶 < 𝑀 , we extend 𝛼
with zeros (padding) until dimension𝑀 is reached, in order to make
𝜙 (𝛼) a vector with dimension𝑀 . Once we have computed 𝛼 (the
chromosome) and 𝜈 = 𝜙 (𝛼) (the phenotype), the ESN is trained using
a classic technique [5]. The whole procedure is repeated until some
appropriate convergence condition is satisfied. The algorithm can
then be summarized as follows: (i) Choose𝑀 ,𝐶 and initialize 𝛼 . (ii)
Extend 𝛼 with zeros until dimension 𝑀 is reached. (iii) Compute
𝜈 = 𝜙 (𝛼). (iv) Store the values in 𝜈 to their positions 𝑝 in the
reservoir. (v) Use some standard training schema for adjusting the
ESN readout weights. (vi) Compute a fitness function using the
trained ESN and testing data. (vii) If the convergence condition is
not satisfied, apply the evolution operations (run the GA), compute
a new vector 𝛼 and repeat from (ii).

3 EXPERIMENTAL RESULTS
We evaluate the performance of the proposed model on well-known
benchmark problems. Due to constrains in space, we report only
some results obtained over Mackey-Glass and Lorenz systems. In
both benchmark problems, we adopted the experimental setting
well-described in [3], i.e. we applied the same network architec-
tures and learning configurations. The inverse DCT was made with
the orthogonal norm using the fftpack Python package. The
evolutionary search was conducted employing GAs, and it was im-
plemented using the DEAP library [2]. Table 1 shows the obtained
results for Lorenz task. We show the NRMSE84 error which is a
standard measure for MGS and also used in Lorenz task [3, 6]. The
error has same order of magnitude than that obtained by Jaeger et
al. using a feedback connection and a refined learning method [3].
We present the results for EvoESN when the number 𝐶 of coeffi-
cients in the frequency representation has values 50, 100 and 150.
In addition, we present the achieved error when the model predicts
a 600 time horizon (600H). Figure 1 illustrates the power of the pro-
posed approach. The red curves (errors obtained by EvoESN with
500 coefficients) correspond to the evolution of the errors against
the generations, for different independent experiments on the MGS
problem. In horizontal lines we show Evolino [6] and ESN with
Feedback connections and refined learning method (ESN-FB II) [3].
After a relatively few number of generations, it is possible to reach
the best registered performance for solving the MG task. We expect
to do further studies using statistical analysis and a full evaluation
of the GA parameters, in order to explore the differences between
ESN with feedback connections and EvoESN on the MSG problem.

4 CONCLUSIONS
This work introduces new insights in the Reservoir Computing
(RC) paradigm. We present a new computational model entitled

Table 1: Results for Lorenz system prediction.

Model Coeff. Error Metric
EvoESN 50 -3.4666 𝑙𝑜𝑔10 NRMSE84
EvoESN 100 -3.6014 𝑙𝑜𝑔10 NRMSE84
EvoESN 150 -4.1379 𝑙𝑜𝑔10 NRMSE84
EvoESN 50 -0.2704 𝑙𝑜𝑔10 absolute error (600H)
EvoESN 150 -0.1407 𝑙𝑜𝑔10 absolute error (600H)

Figure 1: NRMSE84 (log 10 scale) of the MGS prediction.

EvoESN. We added to the standard RC approach an evolutionary
procedure for finding a good set of reservoir weights. The proposed
method projects the reservoir weights into the frequency domain
using the DCT. Then, the reservoir weights are found in the Fourier
space using an evolutionary algorithm. Promising results have been
achieved modeling two popular chaotic systems.

ACKNOWLEDGEMENTS
This work was supported by the GACR-Czech Science Founda-
tion project no. 21-33574K “Lifelong Machine Learning on Data
Streams”.

REFERENCES
[1] Sebastián Basterrech. 2017. Empirical analysis of the necessary and sufficient

conditions of the echo state property. In International Joint Conference on Neural
Networks, IJCNN’17. IEEE Press, Anchorage, AK, USA, 888–896. https://doi.org/
10.1109/IJCNN.2017.7965946

[2] Félix-Antoine Fortin, François-Michel De Rainville, Marc-André Gardner, Marc
Parizeau, and Christian Gagné. 2012. DEAP: Evolutionary Algorithms Made Easy.
Journal of Machine Learning Research 13 (jul 2012), 2171–2175.

[3] Herbert Jaeger andHaraldHaas. 2004. HarnessingNonlinearity: Predicting Chaotic
Systems and Saving Energy in Wireless Communication. Science 304 (April 2004),
78–80. Issue 5667. https://doi.org/10.1126/science.1091277

[4] Jan Koutnik, Faustino Gomez, and Jürgen Schmidhuber. 2010. Evolving Neu-
ral Networks in Compressed Weight Space. In Proceedings of the 12th Annual
Conference on Genetic and Evolutionary Computation (Portland, Oregon, USA)
(GECCO ’10). Association for Computing Machinery, New York, NY, USA, 619–626.
https://doi.org/10.1145/1830483.1830596

[5] Mantas Lukoševičius and Hebert Jaeger. 2009. Reservoir Computing Approaches
to Recurrent Neural Network Training. Computer Science Review 3 (2009), 127–149.
Issue 3. https://doi.org/10.1016/j.cosrev2009.03.005

[6] J. Schmidhuber, D. Wierstra, M. Gagliolo, and F. Gomez. 2007. Training Recurrent
Networks by Evolino. Neural Networks 19 (2007), 757–779.

272

https://doi.org/10.1109/IJCNN.2017.7965946
https://doi.org/10.1109/IJCNN.2017.7965946
https://doi.org/10.1126/science.1091277
https://doi.org/10.1145/1830483.1830596
https://doi.org/10.1016/j.cosrev2009.03.005

	Abstract
	1 Introduction
	2 Evolutionary Echo State Network
	3 Experimental results
	4 Conclusions
	References

