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ABSTRACT
The transformer models have achieved great success on neural
machine translation tasks in recent years. However, the hyper-
parameters of the transformer are often manually designed by ex-
pertise, where the layer is often regularly stacked together without
exploring potentially promising ordering patterns. In this paper,
we propose a transformer architecture design algorithm based on
genetic algorithm, which can automatically find the proper layer
ordering pattern and hyper-parameters for the tasks at hand. The
experimental results show that the models designed by the pro-
posed algorithm outperform the vanilla transformer on the widely
used machine translation benchmark, which reveals that the per-
formance of transformer architecture can be improved by adjusting
layer ordering pattern and hyper-parameters by the proposed algo-
rithm.
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1 INTRODUCTION
Transformer [10] constructs the encoder-decoder structure [11]
by stacking interleaved Multi-Head Attention(MHA) layers and
Feed-Forward Networks (FFN) layers with fixed hyper-parameters.
Raganato et al. [7] observe that when using transformer models
to perform Neural Machine Translation (NMT) tasks, the bottom
blocks in the encoder tend to learn more about the syntax while
the top blocks tend to learn more about the semantics. Therefore,
in principle, different layer ordering patterns should be investi-
gated and the hyper-parameters should be automatically designed
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for these blocks at different positions. Though, researchers have
proposed a series of variant models to improve the performance
of transformer on NMT [3, 6]. There are few works to explore
the layer ordering patterns and the automatically design of the
hyper-parameters. In order to address the above issues, we propose
a Genetic Algorithm (GA)-based algorithm [1, 8, 9], denoted as
Trans-GA, to automatically design a promising transformer archi-
tecture with proper layer ordering pattern and the optimal hyper-
parameters in each block.

2 THE PROPOSED ALGORITHM
The framework of the Trans-GA algorithm is shown in Algorithm 1.
Firstly, the population is initialized with the proposed gene encod-
ing strategy (line 1). Secondly, the fitness of population is evaluated
(line 2). Thirdly, the evolutionary search runs until the stopping
criterion is satisfied (lines 4-9). Finally, the best individual in the
last population is returned for the final training and evaluation
(line 10).

In order to explore potentially promising ordering patterns and
hyper-parameters of transformer model, new gene encoding strat-
egy and genetic operators are designed for the Trans-GA algorithm.

Algorithm 1: Framework of Trans-GA
1 𝑃0 ← Initialize individuals in the first population with the

proposed gene encoding strategy;
2 Evaluate the fitness of 𝑃0;
3 𝑖 ← 1;
4 while stopping criterion is not satisfied do
5 𝑂𝑖 ← Choose parent individuals from 𝑃𝑖 to generate the

offspring with the proposed genetic operators;
6 Evaluate the fitness of 𝑂𝑖 ;
7 𝑃𝑖+1 ← Select next population with the environment

selection algorithm from 𝑃𝑖 ∪𝑂𝑖 ;
8 𝑖 ← 𝑖 + 1;
9 end

10 Return the best individual in 𝑃𝑖

In the new gene encoding strategy, multiple blocks with diverse
layer ordering patterns and customizable hyper-parameters are
designed to represent the individuals in Trans-GA. Specifically,
four possible blocks are designed for the encoder, and each block
contains two layers. Fig. 1a shows the four blocks, where the MHA
rectangle denotes the MHA layer and the FFN rectangle denotes
the FFN layer. 𝐸0, 𝐸1, 𝐸2 and 𝐸3 are the identification numbers for
the four blocks. The two variables in the bracket are the hyper-
parameters of the layers, where ℎ denotes the number of heads
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a. Four candidate blocks in the encoder

b. Four candidate blocks in the decoder
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Figure 1: Candidate blocks for encoder and decoder

of MHA layer and 𝑑 denotes the dimension of FFN layer. For the
decoder, another four blocks 𝐷0, 𝐷1, 𝐷2 and 𝐷3 are designed, as
shown in Fig. 1b, where the M-MHA rectangle denotes the masked
multihead attention layer, the C-MHA rectangle denotes the cross
multihead attention layer. Residual connection and layer normal-
ization are employed in the same way as vaswani-transformer [10],
which are not shown in the above two figures for the simplicity.

New genetic operators are designed for promoting the informa-
tion exchange between individuals. The operators consist of two
parts: crossover and mutation. During the crossover period, two
parents are first selected. Then, the encoders of two parents are
randomly divided into two parts and then swapped to form two
new encoders. With the similar way, two new decoders are also
generated. Finally, two individuals of the next generation are con-
structed by the new encoders and decoders. After crossover, the
individuals have two mutation opportunities, one is the encoder
mutation, and the other is the decoder mutation. During each of
the mutation period, blocks have the chance to be added, removed
or altered in the encoder or the decoder.

3 EXPERIMENT
3.1 Experiment Settings
Three groups of experiments are designed to compare with the
baseline model (i.e., vaswani-transformer). The widely used NMT
benchmark IWSLT-14 German to English [2] is used in the exper-
iments, and the BLEU [5] is employed as the metrics. The word
embedding sizes of the three experiments are 128, 256 and 512,
respectively. The number of generations is 5, 5 and 15, respectively.
Other settings for the three experiments are the same. The block
number range of the encoder and the decoder are set to 5 − 8. The
crossover and the mutation probability are set to 0.6 and 0.2, respec-
tively. The number of heads in MHA layer is selected from [2, 4]
and the FFN dimension candidate list is specified as [512, 1024]. The
number of individuals in each population is set to 10. The settings
of vaswani-Transformer is the same as in [4].

3.2 Results
Table 1 shows the experiment results, where the third and the fourth
columns show the number of encoder blocks and decoder blocks
in the model. The last two columns provide the number of the
parameters of the model and the BLEU score, respectively.

As can be observed from Table 1, when the word embedding
size is 512, the number of parameters of Trans-GA model is slightly
greater than that of the baseline model, and the BLEU score is 0.3

higher than that of the baseline model. When the word embedding
size is 256, the number of parameters of the Trans-GA model is still
greater than that of the baseline model, and the BLEU score is 0.2
higher than that of the baseline model. When the embedding size is
128, the number of parameters of the Trans-GA model is less than
that of the baseline model, but the BLEU score is 0.2 higher than
that of the baseline model.

Table 1: Comparison of Trans-GA models and baseline mod-
els under the word embedding sizes of 512, 256, and 128

Embedding
Size Model # of E # of D # of Para BLEU

512 baseline 6 6 36.7M 34.47
Trans-GA 6 8 41.0M 34.77

256 baseline 6 6 13.7M 34.79
Trans-GA 7 7 13.9M 34.99

128 baseline 6 6 5.7M 32.49
Trans-GA 7 7 5.5M 32.69

4 CONCLUSION
The goal of this paper is to explore the baseline transformer model
(i.e., vaswani-transformer) with proper layer ordering pattern and
hyper-parameters in an automatic way. Our work proves that the
performance of the transformer models can be improved by adjust-
ing the layer ordering patterns. This would benefit to investigation
on manually designing promising transformer models to address
more challenging NMT tasks.
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