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ABSTRACT 
A simple population based Evolutionary Algorithm (EA) was 
used to evolve convolutional neural networks for solving an 
image classification problem (CIFAR10).  Each member of the 
population was defined by a genome.  This work proposes the 
construction of a genome based closely on the naturel world.  The 
genes within such a genome regulate each other’s expression and 
hence build a gene regulatory network (GRN).  In the proposed 
approach, the genome contains no information from the problem 
space and could be applied to any application in principle.  The 
genome behaves as an evolved program that grows multi-cellular 
organisms through a developmental process from an initial single 
cell.  The cellular structure is an intermediate phenotype which is 
then mapped to its final form, a convolutional neural network in 
this case.  The proposed GRN approach was able to evolve 
successful networks whose level of performance is comparable to 
a LeNet5 implementation. 
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1 Proposed Genomic Model 
The inspiration for this work is drawn from the properties and 
behavior of genomes in the natural world [1] [2] [3].  A review of 
GRNs in artificial evolutionary settings is given by Cussat-Blanc 
et al [4].  The genomic model used contains protein producing 
genes where the proteins behave as transcription factors, inter-
cellular signals, morphogen gradients and terminal proteins.  
Every gene has its expression controlled by a regulatory region 
containing an arbitrary number of logic units, which in turn 
contain an arbitrary number of binding units.  Each binding unit is 
capable of binding a transcription factor protein string, if it is 
present above a threshold concentration.  Bound binding units 
within a logic unit combine in a Boolean fashion to turn the logic 
unit on, which in turn either excites or represses the gene.  A 
binding unit is therefore the fundamental unit of a regulatory 
region. It consists of DNA, a string drawn from a 4-letter 
alphabet.  When a gene is excited to express, it has a protein 
coding region that is also represented by DNA.  This DNA is 
examined two letters at a time, (a codon), and converted to a 
string drawn from a 16-letter alphabet.  This new string is then 
referred to as a protein.  Proteins have two basic functions: either 
as a transcription factor for controlling further gene expression, 
(intra, inter or extra cellular); or as a terminal protein to be 
interpreted as forming part of the phenotype.  Since transcription 
factor proteins control the expression of other genes, a GRN is 
formed from these gene-to-gene connections. 

 

Figure 1 Gene Regulation 

A genome is contained within a cell and cells can divide.  As gene 
expression continues in each cell, inter-cellular proteins can be 
passed between cells, extra-cellular protein concentration 
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gradients can be formed and cells can collect terminal proteins.  
As different cells execute different sections of the gene regulatory 
network, they differentiate from each other.  The final collection 
of cells and their terminal proteins are interpreted to form the final 
phenotype, which could be anything, but in this case will be a 
convolutional neural network architecture.  Cells are not placed 
within a coordinate system, but they are ordered.  Cell ordering is 
completely flexible. 

2 Experiments and Results 
Architectures were evolved to perform an image classification 
task using the CIFAR10 dataset [5].  Evolution was controlled by 
a simple GA operating on a population of genomes.  Each genome 
was grown into its final cellular form, mapped onto a phenotype 
and then trained and graded for its classification accuracy against 
the validation images provided from the CIFAR10 dataset.  Once 
the phenotypes were graded, pairs of parent genomes were chosen 
for the production of the next generation and were subjected to 
point mutations, gene crossover and chromosome segregation.  
The population was replaced each epoch with the new mutated 
genomes.  The population size was 50 while 40 evolutionary 
epochs were used.   

 

Figure 2 Minimal CNN architecture starting point and the 
CIFAR10 image classification task.  The LeNet5 performance 

for this task is shown for comparison. 

The initial population of genomes was generated from a base 
genome that was handcrafted to form a minimal CNN.  It was 
then mutated to form the required number of parents for the first 
population.   The minimal CNN had a single convolutional layer 
(filter size = 2, padding = same, stride = 1, output channels = 2), 
followed by a max-pooling layer (filter size =2, stride = 1) with a 
single fully connected layer (output nodes = 20).  The convolution 
layer and the fully connected layer were both followed by a Leaky 
ReLU activation layer.  The output was always a final fully 
connected layer with 10 output nodes followed by a SoftMax 
activation layer.  There were no evolvable parameters in this final 

fully connected layer, it merely connected whatever was before it 
to the 10 classification nodes.  Each evolved architecture was 
trained using 10 training epochs and a batch size of 32.  Training 
was not optimized, as the goal was only to demonstrate the 
viability of the proposed method. 

Results are shown in Figure 2.  Validation accuracies started low 
and continued to improve up to the ninth epoch where progress 
continued but at a slower rate.  New networks within the 
population that added layers failed to establish themselves.  As a 
comparison, performance for the LeNet5 architecture [6], trained 
on the same dataset, is shown. The performance of the population 
as a whole has succeeded in improving on the LeNet5 architecture, 
with the best performing network achieving 64.19% validation 
accuracy against 57.84% for LeNet5. 

3 Conclusions 
During the evolutionary process, it was noticed that networks that 
added layers could not establish themselves within the population.  
This was likely due to the simplicity of the EA and is why 
comparison is restricted to the LeNet5 architecture and not later, 
more modern architectures. 

The results demonstrate two things.  Firstly, the performance dip 
when layers are added impedes evolution from moving away from 
its starting condition.  Secondly, the proposed GRN approach has 
proved stable enough to evolve the performance of networks 
when applied to the CIFAR10 dataset. 

The motivation for this work is to apply a biological model of 
growth and development to the evolution of neural networks.   

• The subsequent genome, based closely on nature, will 
generate a gene regulatory network to control growth. 

• The effect of this is to detach the genome from the problem 
space and requires application specific mappings to connect 
the two. 

• Growth is governed by an abstract cellular structure as an 
intermediate phenotype before mapping to the final form. 

Further progress will depend on replacing the simple EA used 
here and finding ways to allow network innovations to establish 
themselves. 
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